Variable selection with error control: another look at stability selection RD Shah, RJ Samworth Journal of the Royal Statistical Society: Series B (Statistical Methodology …, 2013 | 330 | 2013 |
The Hardness of Conditional Independence Testing and the Generalised Covariance Measure. RD Shah, J Peters Annals of Statistics, 2020 | 210 | 2020 |
Diffuse large B-cell lymphoma classification system that associates normal B-cell subset phenotypes with prognosis K Dybkær, M Bøgsted, S Falgreen, JS Bødker, MK Kjeldsen, A Schmitz, ... Journal of Clinical Oncology 33 (12), 1379, 2015 | 110 | 2015 |
Random Intersection Trees RD Shah, N Meinshausen Journal of Machine Learning Research, 2014 | 57 | 2014 |
Goodness‐of‐fit tests for high dimensional linear models RD Shah, P Bühlmann Journal of the Royal Statistical Society: Series B (Statistical Methodology …, 2018 | 51 | 2018 |
The xyz algorithm for fast interaction search in high-dimensional data GA Thanei, N Meinshausen, RD Shah arXiv preprint arXiv:1610.05108, 2016 | 30 | 2016 |
BETS: The dangers of selection bias in early analyses of the coronavirus disease (COVID-19) pandemic Q Zhao, N Ju, S Bacallado, RD Shah | 26 | 2021 |
Modelling interactions in high-dimensional data with backtracking RD Shah Microtome Publishing, 2016 | 26 | 2016 |
Goodness-of-fit testing in high dimensional generalized linear models J Janková, RD Shah, P Bühlmann, RJ Samworth Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2020 | 24 | 2020 |
Right singular vector projection graphs: fast high dimensional covariance matrix estimation under latent confounding RD Shah, B Frot, GA Thanei, N Meinshausen Journal of the Royal Statistical Society. Series B, Statistical Methodology …, 2020 | 19* | 2020 |
Modelling high-dimensional categorical data using nonconvex fusion penalties BG Stokell, RD Shah, RJ Tibshirani Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2021 | 10 | 2021 |
Debiased inverse propensity score weighting for estimation of average treatment effects with high-dimensional confounders Y Wang, RD Shah arXiv preprint arXiv:2011.08661, 2020 | 9 | 2020 |
On b-bit min-wise hashing for large-scale regression and classification with sparse data R Shah, N Meinshausen Microtome Publishing, 2018 | 9* | 2018 |
Conditional independence testing in Hilbert spaces with applications to functional data analysis AR Lundborg, RD Shah, J Peters Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2022 | 8 | 2022 |
Multicentre study of physical abuse and limb fractures in young children in the East Anglia Region, UK PD Mitchell, R Brown, T Wang, RD Shah, RJ Samworth, S Deakin, P Edge, ... Archives of disease in childhood 104 (10), 956-961, 2019 | 8 | 2019 |
Discussion of ‘Correlated variables in regression: clustering and sparse estimation’by Peter Bühlmann, Philipp Rütimann, Sara van de Geer and Cun-Hui Zhang RD Shah, RJ Samworth Journal of Statistical Planning and Inference 143 (11), 1866-1868, 2013 | 8 | 2013 |
Structure learning for directed trees ME Jakobsen, RD Shah, P Bühlmann, J Peters The Journal of Machine Learning Research 23 (1), 7076-7172, 2022 | 5 | 2022 |
The Projected Covariance Measure for assumption-lean variable significance testing AR Lundborg, I Kim, RD Shah, RJ Samworth arXiv preprint arXiv:2211.02039, 2022 | 4 | 2022 |
A multiple myeloma classification system that associates normal B-cell subset phenotypes with prognosis JS Bødker, RF Brøndum, A Schmitz, AA Schönherz, DS Jespersen, ... Blood Advances 2 (18), 2400-2411, 2018 | 4 | 2018 |
Discussion of ‘Multiscale change point inference’by Frick, Munk and Sieling Y Chen, R Shah, R Samworth Journal of the Royal Statistical Society: Series B 76, 544-546, 2014 | 4 | 2014 |