Tillmann Falck
Tillmann Falck
Bosch Research
Verified email at de.bosch.com
Title
Cited by
Cited by
Year
L2-norm multiple kernel learning and its application to biomedical data fusion
S Yu, T Falck, A Daemen, LC Tranchevent, JAK Suykens, B De Moor, ...
BMC bioinformatics 11 (1), 309, 2010
1152010
Stochastic properties of mobility models in mobile ad hoc networks
S Bandyopadhyay, EJ Coyle, T Falck
IEEE Transactions on Mobile Computing 6 (11), 1218-1229, 2007
802007
Approximate solutions to ordinary differential equations using least squares support vector machines
S Mehrkanoon, T Falck, JAK Suykens
IEEE transactions on neural networks and learning systems 23 (9), 1356-1367, 2012
552012
Least-squares support vector machines for the identification of Wiener–Hammerstein systems
T Falck, P Dreesen, K De Brabanter, K Pelckmans, B De Moor, ...
Control Engineering Practice 20 (11), 1165-1174, 2012
542012
Identification of wiener-hammerstein systems using LS-SVMs
T Falck, K Pelckmans, JAK Suykens, B De Moor
Proceedings of the 15th IFAC Symposium on System Identification (SYSID 2009 …, 2009
442009
Nuclear norm regularization for overparametrized Hammerstein systems
T Falck, JAK Suykens, J Schoukens, B De Moor
49th IEEE Conference on Decision and Control (CDC), 7202-7207, 2010
192010
Time series prediction using ls-svms
M Espinoza, T Falck, JAK Suykens, B De Moor
European Symposium on Time Series Prediction, ESTSP 8, 159-168, 2008
182008
Parameter estimation for time varying dynamical systems using least squares support vector machines
S Mehrkanoon, T Falck, JAK Suykens
IFAC Proceedings Volumes 45 (16), 1300-1305, 2012
162012
Segmentation of time series from nonlinear dynamical systems
T Falck, H Ohlsson, L Ljung, JAK Suykens, B De Moor
IFAC Proceedings Volumes 44 (1), 13209-13214, 2011
132011
Robustness analysis for least squares kernel based regression: an optimization approach
T Falck, JAK Suykens, B De Moor
Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held …, 2009
122009
Linear parametric noise models for least squares support vector machines
T Falck, JAK Suykens, B De Moor
49th IEEE Conference on Decision and Control (CDC), 6389-6394, 2010
82010
NARX identification of Hammerstein systems using least-squares support vector machines
I Goethals, K Pelckmans, T Falck, JAK Suykens, B De Moor
Block-oriented Nonlinear System Identification, 241-258, 2010
72010
Polynomial componentwise LS-SVM: fast variable selection using low rank updates
F Ojeda, T Falck, B De Moor, JAK Suykens
The 2010 International Joint Conference on Neural Networks (IJCNN), 1-7, 2010
52010
A two stage algorithm for kernel based partially linear modeling with orthogonality constraints
T Falck, M Signoretto, JAK Suykens, B De Moor
Internal Report 10-03 ESAT-SISTA, KU Leuven Leuven, Belgium, 2011
32011
Nonlinear system identification using structured kernel based models
T Falck
Uppsala University, 2013
22013
Special Section: Wiener-Hammerstein System Identification Benchmark
H Hjalmarsson, C Rojas, D Rivera
Control Eng. Practice 20, 1095-1246, 2012
22012
Non-sparse kernel fusion and its applications in genomic data integration
S Yu, T Falck, A Daemen, J Suykens, BD Moor, Y Moreau
Technical report, KU Leuven, Nederland, 2009
12009
A Perturbation Analysis using Second Order Cone Programming for Robust Kernel Based Regression
T Falck, M Espinoza, JAK Suykens, B De Moor
Internal Report 08-38, ESAT-SISTA, KU Leuven (Leuven, Belgium), submitted …, 0
1
Kernel based identification of systems with multiple outputs using nuclear norm regularization
T Falck, B De Moor, JAK Suykens
Regularization, Optimization, Kernels, and Support Vector Machines, 389-418, 2014
2014
Nonlinear System Identification using Structured Kernel Based Modeling (Niet-lineaire systeemidentificatie via gestructureerde kernel-gebaseerde modellering)
T Falck
2013
The system can't perform the operation now. Try again later.
Articles 1–20