Follow
Ganqu Cui
Ganqu Cui
Verified email at mails.tsinghua.edu.cn - Homepage
Title
Cited by
Cited by
Year
Graph neural networks: A review of methods and applications
J Zhou, G Cui, S Hu, Z Zhang, C Yang, Z Liu, L Wang, C Li, M Sun
AI open 1, 57-81, 2020
66482020
ULTRAFEEDBACK: Boosting Language Models with Scaled AI Feedback
G Cui, L Yuan, N Ding, G Yao, B He, W Zhu, Y Ni, G Xie, R Xie, Y Lin, ...
Forty-first International Conference on Machine Learning, 2024
249*2024
Adaptive graph encoder for attributed graph embedding
G Cui, J Zhou, C Yang, Z Liu
KDD 2020, 976-985, 2020
2402020
Introduction to graph neural networks
Z Liu, J Zhou
Springer Nature, 2022
1792022
Minicpm: Unveiling the potential of small language models with scalable training strategies
S Hu, Y Tu, X Han, C He, G Cui, X Long, Z Zheng, Y Fang, Y Huang, ...
arXiv preprint arXiv:2404.06395, 2024
1392024
Full-scale information diffusion prediction with reinforced recurrent networks
C Yang, H Wang, J Tang, C Shi, M Sun, G Cui, Z Liu
IEEE Transactions on Neural Networks and Learning Systems 34 (5), 2271-2283, 2021
1312021
Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback
T Yu, Y Yao, H Zhang, T He, Y Han, G Cui, J Hu, Z Liu, HT Zheng, M Sun, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
1202024
Prototypical verbalizer for prompt-based few-shot tuning
G Cui, S Hu, N Ding, L Huang, Z Liu
ACL 2022, 2022
972022
Exploring the universal vulnerability of prompt-based learning paradigm
L Xu, Y Chen, G Cui, H Gao, Z Liu
NAACL 2022 Findings, 2022
812022
A unified evaluation of textual backdoor learning: Frameworks and benchmarks
G Cui, L Yuan, B He, Y Chen, Z Liu, M Sun
NeurIPS 2022 Datasets and Benchmarks Track, 2022
742022
Revisiting Out-of-distribution Robustness in NLP: Benchmarks, Analysis, and LLMs Evaluations
L Yuan, Y Chen, G Cui, H Gao, F Zou, X Cheng, H Ji, Z Liu, M Sun
NeurIPS 2023 Datasets and Benchmarks Track 36, 2024
562024
Advancing llm reasoning generalists with preference trees
L Yuan, G Cui, H Wang, N Ding, X Wang, J Deng, B Shan, H Chen, R Xie, ...
arXiv preprint arXiv:2404.02078, 2024
462024
A close look into the calibration of pre-trained language models
Y Chen, L Yuan, G Cui, Z Liu, H Ji
ACL 2023, 2022
432022
Rlaif-v: Aligning mllms through open-source ai feedback for super gpt-4v trustworthiness
T Yu, H Zhang, Y Yao, Y Dang, D Chen, X Lu, G Cui, T He, Z Liu, TS Chua, ...
arXiv preprint arXiv:2405.17220, 2024
402024
Why should adversarial perturbations be imperceptible? rethink the research paradigm in adversarial NLP
Y Chen, H Gao, G Cui, F Qi, L Huang, Z Liu, M Sun
EMNLP 2022, 2022
372022
Moderate-fitting as a natural backdoor defender for pre-trained language models
B Zhu, Y Qin, G Cui, Y Chen, W Zhao, C Fu, Y Deng, Z Liu, J Wang, W Wu, ...
Advances in Neural Information Processing Systems 35, 1086-1099, 2022
262022
Controllable preference optimization: Toward controllable multi-objective alignment
Y Guo, G Cui, L Yuan, N Ding, Z Sun, B Sun, H Chen, R Xie, J Zhou, Y Lin, ...
arXiv preprint arXiv:2402.19085, 2024
212024
Noise contrastive alignment of language models with explicit rewards
H Chen, G He, L Yuan, G Cui, H Su, J Zhu
arXiv preprint arXiv:2402.05369, 2024
152024
Machine-learning-driven matrix ordering for power grid analysis
G Cui, W Yu, X Li, Z Zeng, B Gu
2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), 984-987, 2019
142019
INTERVENOR: Prompting the Coding Ability of Large Language Models with the Interactive Chain of Repair
H Wang, Z Liu, S Wang, G Cui, N Ding, Z Liu, G Yu
Findings of the Association for Computational Linguistics ACL 2024, 2081-2107, 2024
11*2024
The system can't perform the operation now. Try again later.
Articles 1–20