Jintao KE
Jintao KE
Research Assistant Professor, Hong Kong Polytechnic University
Verifierad e-postadress på connect.ust.hk - Startsida
Titel
Citeras av
Citeras av
År
Deep multi-view spatial-temporal network for taxi demand prediction
H Yao, F Wu, J Ke, X Tang, Y Jia, S Lu, P Gong, J Ye, Z Li
arXiv preprint arXiv:1802.08714, 2018
3212018
Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach
J Ke, H Zheng, H Yang, XM Chen
Transportation Research Part C: Emerging Technologies 85, 591-608, 2017
2362017
A simple reservation and allocation model of shared parking lots
C Shao, H Yang, Y Zhang, J Ke
Transportation Research Part C: Emerging Technologies 71, 303-312, 2016
642016
Hexagon-based convolutional neural network for supply-demand forecasting of ride-sourcing services
J Ke, H Yang, H Zheng, X Chen, Y Jia, P Gong, J Ye
IEEE Transactions on Intelligent Transportation Systems 20 (11), 4160-4173, 2018
232018
Optimizing matching time interval and matching radius in on-demand ride-sourcing markets
H Yang, X Qin, J Ke, J Ye
Transportation Research Part B: Methodological 131, 84-105, 2020
13*2020
Modelling drivers’ working and recharging schedules in a ride-sourcing market with electric vehicles and gasoline vehicles
J Ke, X Cen, H Yang, X Chen, J Ye
Transportation Research Part E: Logistics and Transportation Review 125, 160-180, 2019
122019
A universal distribution law of network detour ratios
H Yang, J Ke, J Ye
Transportation Research Part C: Emerging Technologies 96, 22-37, 2018
112018
Ridesourcing car detection by transfer learning
L Wang, X Geng, J Ke, C Peng, X Ma, D Zhang, Q Yang
arXiv preprint arXiv:1705.08409, 2017
52017
Pricing and equilibrium in on-demand ride-pooling markets
J Ke, H Yang, X Li, H Wang, J Ye
Transportation Research Part B: Methodological 139, 411-431, 2020
4*2020
Dynamic optimization strategies for on-demand ride services platform: Surge pricing, commission rate, and incentives
XM Chen, H Zheng, J Ke, H Yang
Transportation Research Part B: Methodological 138, 23-45, 2020
42020
Learning to delay in ride-sourcing systems: a multi-agent deep reinforcement learning framework
KE Jintao, H Yang, J Ye
IEEE Transactions on Knowledge and Data Engineering, 2020
4*2020
Analysis of multi-modal commute behavior with feeding and competing ridesplitting services
Z Zhu, X Qin, J Ke, Z Zheng, H Yang
Transportation Research Part A: Policy and Practice 132, 713-727, 2020
42020
PCA-based missing information imputation for real-time crash likelihood prediction under imbalanced data
J Ke, S Zhang, H Yang, X Chen
Transportmetrica A: transport science 15 (2), 872-895, 2019
32019
Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network
J Ke, X Qin, H Yang, Z Zheng, Z Zhu, J Ye
arXiv preprint arXiv:1910.09103, 2019
32019
Competitive ride-sourcing market with a third-party integrator
Y Zhou, H Yang, J Ke, H Wang, X Li
arXiv preprint arXiv:2008.09815, 2020
2020
Data-Driven Analysis of Matching Probability, Routing Distance and Detour Distance In On-Demand Ride-Pooling Services
J Ke, Z Zheng, H Yang, J Ye
Preprint, 2020
2020
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–16