Tom Everitt
Tom Everitt
Research Scientist at Deepmind
Verified email at google.com - Homepage
TitleCited byYear
AI safety gridworlds
J Leike, M Martic, V Krakovna, PA Ortega, T Everitt, A Lefrancq, L Orseau, ...
arXiv preprint arXiv:1711.09883, 2017
692017
Count-based exploration in feature space for reinforcement learning
J Martin, SN Sasikumar, T Everitt, M Hutter
arXiv preprint arXiv:1706.08090, 2017
362017
Reinforcement Learning with Corrupted Reward Channel
T Everitt, V Krakovna, L Orseau, M Hutter, S Legg
26th International Joint Conference on Artificial Intelligence (IJCAI), 2017
322017
AGI safety literature review
T Everitt, G Lea, M Hutter
arXiv preprint arXiv:1805.01109, 2018
202018
Self-modification of policy and utility function in rational agents
T Everitt, D Filan, M Daswani, M Hutter
International Conference on Artificial General Intelligence, 1-11, 2016
202016
Avoiding wireheading with value reinforcement learning
T Everitt, M Hutter
International Conference on Artificial General Intelligence, 12-22, 2016
192016
Scalable agent alignment via reward modeling: a research direction
J Leike, D Krueger, T Everitt, M Martic, V Maini, S Legg
arXiv preprint arXiv:1811.07871, 2018
132018
Death and suicide in universal artificial intelligence
J Martin, T Everitt, M Hutter
International Conference on Artificial General Intelligence, 23-32, 2016
112016
Free lunch for optimisation under the universal distribution
T Everitt, T Lattimore, M Hutter
2014 IEEE Congress on Evolutionary Computation (CEC), 167-174, 2014
112014
Understanding agent incentives using causal influence diagrams, Part I: single action settings
T Everitt, PA Ortega, E Barnes, S Legg
arXiv preprint arXiv:1902.09980, 2019
102019
Universal artificial intelligence
T Everitt, M Hutter
Foundations of Trusted Autonomy, 15-46, 2018
92018
Sequential extensions of causal and evidential decision theory
T Everitt, J Leike, M Hutter
International Conference on Algorithmic DecisionTheory, 205-221, 2015
82015
Can we measure the difficulty of an optimization problem?
T Alpcan, T Everitt, M Hutter
2014 IEEE Information Theory Workshop (ITW 2014), 356-360, 2014
82014
Analytical results on the BFS vs. DFS algorithm selection problem. Part I: tree search
T Everitt, M Hutter
Australasian Joint Conference on Artificial Intelligence, 157-165, 2015
72015
The alignment problem for Bayesian history-based reinforcement learners
T Everitt, M Hutter
Under submission, 2018
62018
Towards Safe Artificial General Intelligence
T Everitt
The Australian National University, 2018
62018
Artificial general intelligence
T Everitt, B Goertzel, A Potapov
Lecture Notes in Artificial Intelligence. Heidelberg: Springer, 2017
62017
Analytical Results on the BFS vs. DFS Algorithm Selection Problem: Part II: Graph Search
T Everitt, M Hutter
Australasian Joint Conference on Artificial Intelligence, 166-178, 2015
62015
A game-theoretic analysis of the off-switch game
T Wängberg, M Böörs, E Catt, T Everitt, M Hutter
International Conference on Artificial General Intelligence, 167-177, 2017
52017
A topological approach to meta-heuristics: analytical results on the BFS vs. DFS algorithm selection problem
T Everitt, M Hutter
arXiv preprint arXiv:1509.02709, 2015
52015
The system can't perform the operation now. Try again later.
Articles 1–20