How algorithmic confounding in recommendation systems increases homogeneity and decreases utility AJB Chaney, BM Stewart, BE Engelhardt Proceedings of the 12th ACM Conference on Recommender Systems, 2018 | 364 | 2018 |
Visualizing topic models A Chaney, D Blei Proceedings of the International AAAI Conference on Web and Social Media 6 …, 2012 | 334 | 2012 |
A probabilistic model for using social networks in personalized item recommendation AJB Chaney, DM Blei, T Eliassi-Rad Proceedings of the 9th ACM Conference on Recommender Systems, 43-50, 2015 | 228 | 2015 |
How can machine learning aid behavioral marketing research? L Hagen, K Uetake, N Yang, B Bollinger, AJB Chaney, D Dzyabura, ... Marketing Letters 31, 361-370, 2020 | 54 | 2020 |
A large-scale exploration of group viewing patterns AJB Chaney, M Gartrell, JM Hofman, J Guiver, N Koenigstein, P Kohli, ... Proceedings of the ACM International Conference on Interactive Experiences …, 2014 | 34 | 2014 |
Simurec: Workshop on synthetic data and simulation methods for recommender systems research MD Ekstrand, A Chaney, P Castells, R Burke, D Rohde, M Slokom Proceedings of the 15th ACM conference on recommender systems, 803-805, 2021 | 19 | 2021 |
Detecting and characterizing events AJB Chaney, H Wallach, M Connelly, DM Blei Proceedings of the 2016 Conference on Empirical Methods in Natural Language …, 2016 | 19 | 2016 |
Real-time topic models for crisis counseling K Dinakar, AJB Chaney, H Lieberman, DM Blei KDD DSSG Workshop, 1-4, 2014 | 19 | 2014 |
“Dark patterns” in online services: a motivating study and agenda for future research J Runge, D Wentzel, JY Huh, A Chaney Marketing Letters 34 (1), 155-160, 2023 | 12 | 2023 |
Recommendation system simulations: A discussion of two key challenges AJB Chaney arXiv preprint arXiv:2109.02475, 2021 | 10 | 2021 |
Mining large-scale tv group viewing patterns for group recommendation A Chaney, M Gartrell, J Hofman, J Guiver, N Koenigstein, P Kohli, ... Microsoft Research, Technical Report, MSR-TR-2013-114, 2013 | 7 | 2013 |
Algorithmic recommendations have limited effects on polarization: A naturalistic experiment on YouTube.” N Liu, MA Baum, AJ Berinsky, AJB Chaney, J de Benedictis-Kessner, ... September 18, 398-404, 2023 | 6 | 2023 |
MORS 2021: 1st Workshop on Multi-Objective Recommender Systems H Abdollahpouri, M Elahi, M Mansoury, S Sahebi, Z Nazari, A Chaney, ... Proceedings of the 15th ACM Conference on Recommender Systems, 787-788, 2021 | 5 | 2021 |
Poisson trust factorization for incorporating social networks into personalized item recommendation AJB Chaney, P Gopalan, D Blei NIPS Workshop: What Difference Does Personalization Make, 2013 | 3 | 2013 |
A guide to black box variational inference for gamma distributions AJ Chaney | 1 | 2015 |
Who, what, when, where, and why? A computational approach to understanding historical events using state depart-ment cables A Chaney, H Wallach, D Blei Unpublished Working Paper, 2015 | 1 | 2015 |
Do Online Video Recommendation Algorithms Increase Polarization? BM Stewart, N Liu, M Baum, AJ Berinsky, AJB Chaney, ... OSF, 2024 | | 2024 |
Amended: Do Online Video Recommendation Algorithms Increase Polarization? N Liu, J Anastasopoulos, M Baum, AJB Chaney, J de Benedictis-Kessner, ... OSF, 2021 | | 2021 |
Nonparametric Deconvolution Models AJB Chaney, A Verma, Y Lee, BE Engelhardt arXiv preprint arXiv:2003.07718, 2020 | | 2020 |
Computational Methods for Exploring Human Behavior AJB Chaney Princeton University, 2016 | | 2016 |