Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions M Hoffmann, B Zimmermann, GP Müller, D Schürhoff, NS Kiselev, ... Nature communications 8 (1), 1-9, 2017 | 93 | 2017 |

Spectral approximation of pattern-forming nonlinear evolution equations with double-well potentials of quadratic growth N Condette, C Melcher, E Süli Mathematics of computation 80 (273), 205-223, 2011 | 51 | 2011 |

The logarithmic tail of Néel walls C Melcher Archive for rational mechanics and analysis 168 (2), 83-113, 2003 | 49 | 2003 |

Chiral skyrmions in the plane C Melcher Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2014 | 47 | 2014 |

Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls A Capella, C Melcher, F Otto Nonlinearity 20 (11), 2519, 2007 | 41 | 2007 |

Existence of Partially Regular Solutions for Landau–Lifshitz Equations in ℝ3 C Melcher Communications in Partial Differential Equations 30 (4), 567-587, 2005 | 39 | 2005 |

Regularity in oscillatory nonlinear elliptic systems J Kristensen, C Melcher Mathematische Zeitschrift 260 (4), 813-847, 2008 | 30 | 2008 |

Dynamics for Ginzburg-Landau vortices under a mixed flow M Kurzke, C Melcher, R Moser, D Spirn Indiana University mathematics journal, 2597-2621, 2009 | 29 | 2009 |

Global solvability of the Cauchy problem for the Landau-Lifshitz-Gilbert equation in higher dimensions C Melcher Indiana University Mathematics Journal, 1175-1200, 2012 | 28 | 2012 |

Logarithmic lower bounds for Néel walls C Melcher Calculus of Variations and Partial Differential Equations 21 (2), 209-219, 2004 | 24 | 2004 |

Ginzburg–Landau vortices driven by the Landau–Lifshitz–Gilbert equation M Kurzke, C Melcher, R Moser, D Spirn Archive for rational mechanics and analysis 199 (3), 843-888, 2011 | 22 | 2011 |

An implicit midpoint spectral approximation of nonlocal Cahn--Hilliard equations B Benesová, C Melcher, E Suli SIAM Journal on Numerical Analysis 52 (3), 1466-1496, 2014 | 19 | 2014 |

Domain wall motion in ferromagnetic layers C Melcher Physica D: Nonlinear Phenomena 192 (3-4), 249-264, 2004 | 16 | 2004 |

Compactness results for static and dynamic chiral skyrmions near the conformal limit L Döring, C Melcher Calculus of Variations and Partial Differential Equations 56 (3), 60, 2017 | 15 | 2017 |

Landau--Lifshitz--Slonczewski Equations: Global Weak and Classical Solutions C Melcher, M Ptashnyk SIAM Journal on Mathematical Analysis 45 (1), 407-429, 2013 | 15 | 2013 |

Thin-film limits for Landau–Lifshitz–Gilbert equations C Melcher SIAM Journal on Mathematical Analysis 42 (1), 519-537, 2010 | 15 | 2010 |

Domain walls and vortices in thin ferromagnetic films M Kurzke, C Melcher, R Moser Analysis, modeling and simulation of multiscale problems, 249-298, 2006 | 14 | 2006 |

Vortex motion for the Landau–Lifshitz–Gilbert equation with spin-transfer torque M Kurzke, C Melcher, R Moser SIAM journal on mathematical analysis 43 (3), 1099-1121, 2011 | 13 | 2011 |

Stability of axisymmetric chiral skyrmions X Li, C Melcher Journal of Functional Analysis 275 (10), 2817-2844, 2018 | 9 | 2018 |

A dual approach to regularity in thin film micromagnetics C Melcher Calculus of Variations and Partial Differential Equations 29 (1), 85-98, 2007 | 7 | 2007 |