Följ
Samuel Vaiter
Samuel Vaiter
CNRS Researcher
Verifierad e-postadress på math.cnrs.fr - Startsida
Titel
Citeras av
Citeras av
År
Robust sparse analysis regularization
S Vaiter, G Peyré, C Dossal, J Fadili
IEEE Transactions on Information Theory 59 (4), 2001–2016, 2013
1442013
Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection
CA Deledalle, S Vaiter, J Fadili, G Peyré
SIAM Journal on Imaging Sciences 7 (4), 2448-2487, 2014
1342014
Model selection with low complexity priors
S Vaiter, M Golbabaee, J Fadili, G Peyré
Information and Inference: A Journal of the IMA 4 (3), 230-287, 2015
682015
Convergence and stability of graph convolutional networks on large random graphs
N Keriven, A Bietti, S Vaiter
Advances in Neural Information Processing Systems 33, 21512-21523, 2020
632020
Model consistency of partly smooth regularizers
S Vaiter, G Peyré, J Fadili
IEEE Transactions on Information Theory 64 (3), 1725-1737, 2017
582017
Implicit differentiation of lasso-type models for hyperparameter optimization
Q Bertrand, Q Klopfenstein, M Blondel, S Vaiter, A Gramfort, J Salmon
International Conference on Machine Learning, 810-821, 2020
552020
The degrees of freedom of partly smooth regularizers
S Vaiter, C Deledalle, J Fadili, G Peyré, C Dossal
Annals of the Institute of Statistical Mathematics 69, 791-832, 2017
472017
Local behavior of sparse analysis regularization: Applications to risk estimation
S Vaiter, C Deledalle, G Peyré, C Dossal, J Fadili
Applied and Computational Harmonic Analysis 35 (3), 433-451, 2012
412012
Clear: Covariant least-square refitting with applications to image restoration
CA Deledalle, N Papadakis, J Salmon, S Vaiter
SIAM Journal on Imaging Sciences 10 (1), 243-284, 2017
402017
A framework for bilevel optimization that enables stochastic and global variance reduction algorithms
M Dagréou, P Ablin, S Vaiter, T Moreau
Advances in Neural Information Processing Systems 35, 26698-26710, 2022
372022
Low complexity regularization of linear inverse problems
S Vaiter, G Peyré, J Fadili
Sampling Theory, a Renaissance: Compressive Sensing and Other Developments …, 2015
352015
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning
Q Bertrand, Q Klopfenstein, M Massias, M Blondel, S Vaiter, A Gramfort, ...
Journal of Machine Learning Research 23 (149), 1-43, 2022
262022
On the universality of graph neural networks on large random graphs
N Keriven, A Bietti, S Vaiter
Advances in Neural Information Processing Systems 34, 6960-6971, 2021
252021
Dual extrapolation for sparse generalized linear models
M Massias, S Vaiter, A Gramfort, J Salmon
The Journal of Machine Learning Research 21 (1), 9530-9562, 2020
232020
Accelerated alternating descent methods for Dykstra-like problems
A Chambolle, P Tan, S Vaiter
Journal of Mathematical Imaging and Vision 59, 481-497, 2017
222017
The degrees of freedom of the Group Lasso for a General Design
S Vaiter, C Deledalle, G Peyré, J Fadili, C Dossal
arXiv preprint arXiv:1212.6478, 2012
202012
The Degrees of Freedom of the Group Lasso
S Vaiter, C Deledalle, G Peyré, J Fadili, C Dossal
arXiv preprint arXiv:1205.1481, 2012
202012
Stable recovery with analysis decomposable priors
MJ Fadili, G Peyré, S Vaiter, C Deledalle, J Salmon
arXiv preprint arXiv:1304.4407, 2013
192013
Risk estimation for matrix recovery with spectral regularization
CA Deledalle, S Vaiter, G Peyré, J Fadili, C Dossal
arXiv preprint arXiv:1205.1482, 2012
182012
Unbiased risk estimation for sparse analysis regularization
C Deledalle, S Vaiter, G Peyré, J Fadili, C Dossal
Proc. ICIP'12, 2012
182012
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20