Nicolas Vayatis
Nicolas Vayatis
Professeur des universités, ENS Paris-Saclay
Verifierad e-postadress på - Startsida
Citeras av
Citeras av
Ranking and empirical minimization of U-statistics
S Clémençon, G Lugosi, N Vayatis
The Annals of Statistics 36 (2), 844-874, 2008
On the Bayes-risk consistency of regularized boosting methods
G Lugosi, N Vayatis
The Annals of statistics 32 (1), 30-55, 2004
Selective review of offline change point detection methods
C Truong, L Oudre, N Vayatis
Signal Processing 167, 107299, 2020
Estimation of simultaneously sparse and low rank matrices
E Richard, PA Savalle, N Vayatis
Proceedings of ICML'12, 2012
On the rate of convergence of regularized boosting classifiers
G Blanchard, G Lugosi, N Vayatis
Journal of Machine Learning Research 4 (Oct), 861-894, 2003
Parallel Gaussian process optimization with upper confidence bound and pure exploration
E Contal, D Buffoni, A Robicquet, N Vayatis
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2013
Ranking the best instances
S Clémençon, N Vayatis
Journal of Machine Learning Research 8 (Dec), 2671-2699, 2007
Recursive aggregation of estimators by the mirror descent algorithm with averaging
AB Juditsky, AV Nazin, AB Tsybakov, N Vayatis
Problems of Information Transmission 41 (4), 368-384, 2005
Ranking and scoring using empirical risk minimization
S Clémençon, G Lugosi, N Vayatis
International Conference on Computational Learning Theory, 1-15, 2005
Tree-based ranking methods
S Clémençon, N Vayatis
IEEE Transactions on Information Theory 55 (9), 4316-4336, 2009
Gaussian process optimization with mutual information
E Contal, V Perchet, N Vayatis
International Conference on Machine Learning, 253-261, 2014
Ranking forests
S Clémençon, M Depecker, N Vayatis
Journal of Machine Learning Research 14 (Jan), 39-73, 2013
Quantitative analysis of dynamic fault trees based on the structure function
G Merle, JM Roussel, JJ Lesage
Quality and Reliability Engineering International 30 (1), 143-156, 2014
Empirical performance maximization for linear rank statistics
S Clémençcon, N Vayatis
Advances in neural information processing systems 21, 305-312, 2008
Gap-free bounds for stochastic multi-armed bandit
A Juditsky, AV Nazin, AB Tsybakov, N Vayatis
IFAC Proceedings Volumes 41 (2), 11560-11563, 2008
Global optimization of lipschitz functions
C Malherbe, N Vayatis
arXiv preprint arXiv:1703.02628, 2017
Can small islands protect nearby coasts from tsunamis? An active experimental design approach
TS Stefanakis, E Contal, N Vayatis, F Dias, CE Synolakis
Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2014
Link prediction in graphs with autoregressive features.
E Richard, S Gaïffas, N Vayatis
J. Mach. Learn. Res. 15 (1), 565-593, 2014
Adaptive partitioning schemes for bipartite ranking
S Clémençon, M Depecker, N Vayatis
Machine Learning 83 (1), 31-69, 2011
Overlaying classifiers: a practical approach to optimal scoring
S Clémençon, N Vayatis
Constructive Approximation 32 (3), 619-648, 2010
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20