Brooks Paige
Brooks Paige
Associate Professor, University College London
Verifierad e-postadress på ucl.ac.uk - Startsida
Titel
Citeras av
Citeras av
År
Grammar variational autoencoder
MJ Kusner, B Paige, JM Hernández-Lobato
Proceedings of the 34th International Conference on Machine Learning, 1945-1954, 2017
3742017
Learning disentangled representations with semi-supervised deep generative models
N Siddharth, B Paige, JW Van de Meent, A Desmaison, F Wood, ...
Advances in Neural Information Processing Systems (NIPS) 30, 5925–5935, 2017
2142017
Inference networks for sequential Monte Carlo in graphical models
B Paige, F Wood
Proceedings of the 33rd International Conference on Machine Learning, 3040-3049, 2016
872016
Structured Disentangled Representations
B Esmaeili, H Wu, S Jain, A Bozkurt, N Siddharth, B Paige, DH Brooks, ...
arXiv preprint arXiv:1804.02086, 2018
84*2018
A compilation target for probabilistic programming languages
B Paige, F Wood
Proceedings of The 31st International Conference on Machine Learning, 1935--1943, 2014
662014
An introduction to probabilistic programming
JW van de Meent, B Paige, H Yang, F Wood
arXiv preprint arXiv:1809.10756, 2018
532018
Asynchronous anytime sequential monte carlo
B Paige, F Wood, A Doucet, YW Teh
arXiv preprint arXiv:1407.2864, 2014
522014
Take a look around: using street view and satellite images to estimate house prices
S Law, B Paige, C Russell
ACM Transactions on Intelligent Systems and Technology (TIST) 10 (5), 1-19, 2019
472019
Bayesian Inference and Online Experimental Design for Mapping Neural Microcircuits.
B Shababo, B Paige, A Pakman, L Paninski
NIPS 26, 1304-1312, 2013
352013
A generative model for electron paths
J Bradshaw, MJ Kusner, B Paige, MHS Segler, JM Hernández-Lobato
International Conference on Learning Representations (ICLR), 2019
30*2019
Variational mixture-of-experts autoencoders for multi-modal deep generative models
Y Shi, N Siddharth, B Paige, PHS Torr
arXiv preprint arXiv:1911.03393, 2019
292019
A model to search for synthesizable molecules
J Bradshaw, B Paige, MJ Kusner, MHS Segler, JM Hernández-Lobato
arXiv preprint arXiv:1906.05221, 2019
292019
Interacting particle markov chain monte carlo
T Rainforth, C Naesseth, F Lindsten, B Paige, JW Vandemeent, A Doucet, ...
International Conference on Machine Learning, 2616-2625, 2016
282016
Black-box policy search with probabilistic programs
JW Vandemeent, B Paige, D Tolpin, F Wood
Artificial Intelligence and Statistics, 1195-1204, 2016
282016
Learning a Generative Model for Validity in Complex Discrete Structures
D Janz, J van der Westhuizen, B Paige, MJ Kusner, ...
International Conference on Learning Representations (ICLR), 2018
142018
Inducing interpretable representations with variational autoencoders
N Siddharth, B Paige, A Desmaison, JW Van de Meent, F Wood, ...
arXiv preprint arXiv:1611.07492, 2016
82016
Output-sensitive adaptive metropolis-hastings for probabilistic programs
D Tolpin, JW van de Meent, B Paige, F Wood
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2015
72015
Kernel sequential monte carlo
I Schuster, H Strathmann, B Paige, D Sejdinovic
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2017
62017
Tempering by subsampling
JW van de Meent, B Paige, F Wood
arXiv preprint arXiv:1401.7145, 2014
62014
Grammar Variational Autoencoder, 2017
MJ Kusner, B Paige, JM Hernández-Lobato
arXiv preprint arXiv:1703.01925, 0
5
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20