Design and analysis of lithium–niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering S Gong, G Piazza IEEE Transactions on Microwave Theory and Techniques 61 (1), 403-414, 2012 | 334 | 2012 |
5 GHz lithium niobate MEMS resonators with high FoM of 153 Y Yang, A Gao, R Lu, S Gong 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems …, 2017 | 292 | 2017 |
Toward Ka band acoustics: Lithium niobate asymmetrical mode piezoelectric MEMS resonators Y Yang, R Lu, T Manzaneque, S Gong 2018 IEEE International Frequency Control Symposium (IFCS), 1-5, 2018 | 283 | 2018 |
Interdigital transducers on a piezoelectric thin-film for signal compression S Gong, R Lu, TM Garcia US Patent 11,451,209, 2022 | 188 | 2022 |
High Antisymmetric Mode Lithium Niobate MEMS Resonators With Spurious Mitigation Y Yang, R Lu, S Gong Journal of Microelectromechanical Systems 29 (2), 135-143, 2020 | 165 | 2020 |
Surface acoustic wave devices using lithium niobate on silicon carbide S Zhang, R Lu, H Zhou, S Link, Y Yang, Z Li, K Huang, X Ou, S Gong IEEE Transactions on Microwave Theory and Techniques 68 (9), 3653-3666, 2020 | 145 | 2020 |
A1 resonators in 128° Y-cut lithium niobate with electromechanical coupling of 46.4% R Lu, Y Yang, S Link, S Gong Journal of Microelectromechanical Systems 29 (3), 313-319, 2020 | 130 | 2020 |
A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches S Gong, H Shen, NS Barker IEEE Transactions on Microwave Theory and Techniques 59 (4), 894-900, 2011 | 128 | 2011 |
Accurate extraction of large electromechanical coupling in piezoelectric MEMS resonators R Lu, MH Li, Y Yang, T Manzaneque, S Gong Journal of Microelectromechanical Systems 28 (2), 209-218, 2019 | 125 | 2019 |
4.5 GHz lithium niobate MEMS filters with 10% fractional bandwidth for 5G front-ends Y Yang, R Lu, L Gao, S Gong Journal of Microelectromechanical Systems 28 (4), 575-577, 2019 | 107 | 2019 |
Figure-of-merit enhancement for laterally vibrating lithium niobate MEMS resonators S Gong, G Piazza IEEE transactions on electron devices 60 (11), 3888-3894, 2013 | 104 | 2013 |
Microwave acoustic devices: Recent advances and outlook S Gong, R Lu, Y Yang, L Gao, AE Hassanien IEEE Journal of Microwaves 1 (2), 601-609, 2021 | 101 | 2021 |
10–60-GHz electromechanical resonators using thin-film lithium niobate Y Yang, R Lu, L Gao, S Gong IEEE Transactions on Microwave Theory and Techniques 68 (12), 5211-5220, 2020 | 94 | 2020 |
Three-dimensional radio-frequency transformers based on a self-rolled-up membrane platform W Huang, J Zhou, PJ Froeter, K Walsh, S Liu, MD Kraman, M Li, ... Nature Electronics 1 (5), 305-313, 2018 | 87 | 2018 |
RF acoustic microsystems based on suspended lithium niobate thin films: Advances and outlook R Lu, S Gong Journal of Micromechanics and Microengineering 31 (11), 114001, 2021 | 75 | 2021 |
Acoustically driven electromagnetic radiating elements AE Hassanien, M Breen, MH Li, S Gong Scientific reports 10 (1), 17006, 2020 | 69 | 2020 |
A radio frequency nonreciprocal network based on switched acoustic delay lines R Lu, T Manzaneque, Y Yang, L Gao, A Gao, S Gong IEEE Transactions on Microwave Theory and Techniques 67 (4), 1516-1530, 2019 | 66 | 2019 |
Analysis and removal of spurious response in SH0 lithium niobate MEMS resonators YH Song, R Lu, S Gong IEEE Transactions on Electron Devices 63 (5), 2066-2073, 2016 | 62 | 2016 |
Gigahertz low-loss and wideband S0 mode lithium niobate acoustic delay lines R Lu, T Manzaneque, Y Yang, MH Li, S Gong IEEE transactions on ultrasonics, ferroelectrics, and frequency control 66 …, 2019 | 61 | 2019 |
Enabling higher order lamb wave acoustic devices with complementarily oriented piezoelectric thin films R Lu, Y Yang, S Link, S Gong Journal of Microelectromechanical Systems 29 (5), 1332-1346, 2020 | 57 | 2020 |