Tom Kwiatkowski
Tom Kwiatkowski
Research Scientist, Google
Verifierad e-postadress på google.com
Titel
Citeras av
Citeras av
År
Scaling Semantic Parsers with On-the-fly Ontology Matching
T Kwiatkowski, E Choi, Y Artzi, L Zettlemoyer
2722013
Inducing probabilistic CCG grammars from logical form with higher-order unification
T Kwiatkowski, L Zettlemoyer, S Goldwater, M Steedman
Proceedings of the 2010 conference on empirical methods in natural language …, 2010
2712010
Lexical generalization in CCG grammar induction for semantic parsing
T Kwiatkowski, L Zettlemoyer, S Goldwater, M Steedman
Proceedings of the conference on empirical methods in natural language …, 2011
1822011
Transforming dependency structures to logical forms for semantic parsing
S Reddy, O Täckström, M Collins, T Kwiatkowski, D Das, M Steedman, ...
Transactions of the Association for Computational Linguistics 4, 127-140, 2016
1112016
Natural questions: a benchmark for question answering research
T Kwiatkowski, J Palomaki, O Redfield, M Collins, A Parikh, C Alberti, ...
1002019
Learning recurrent span representations for extractive question answering
K Lee, S Salant, T Kwiatkowski, A Parikh, D Das, J Berant
arXiv preprint arXiv:1611.01436, 2016
892016
A probabilistic model of syntactic and semantic acquisition from child-directed utterances and their meanings
T Kwiatkowski, M Steedman, L Zettlemoyer, S Goldwater
Proceedings of the 13th Conference of the European Chapter of the ACL (EACL …, 2012
792012
Bootstrapping language acquisition
O Abend, T Kwiatkowski, NJ Smith, S Goldwater, M Steedman
Cognition 164, 116-143, 2017
432017
Scalable semantic parsing with partial ontologies
E Choi, T Kwiatkowski, L Zettlemoyer
Proceedings of the 53rd Annual Meeting of the Association for Computational …, 2015
342015
Morpho-syntactic lexical generalization for CCG semantic parsing
A Wang, T Kwiatkowski, L Zettlemoyer
Proceedings of the 2014 Conference on Empirical Methods in Natural Language …, 2014
222014
Matching the blanks: Distributional similarity for relation learning
LB Soares, N FitzGerald, J Ling, T Kwiatkowski
arXiv preprint arXiv:1906.03158, 2019
212019
BoolQ: Exploring the surprising difficulty of natural yes/no questions
C Clark, K Lee, MW Chang, T Kwiatkowski, M Collins, K Toutanova
arXiv preprint arXiv:1905.10044, 2019
182019
Using syntactic and confusion network structure for out-of-vocabulary word detection
A Marin, T Kwiatkowski, M Ostendorf, L Zettlemoyer
2012 IEEE Spoken Language Technology Workshop (SLT), 159-164, 2012
182012
“Can you give me another word for hyperbaric?”: Improving speech translation using targeted clarification questions
NF Ayan, A Mandal, M Frandsen, J Zheng, P Blasco, A Kathol, F Béchet, ...
2013 IEEE International Conference on Acoustics, Speech and Signal …, 2013
172013
Multi-mention learning for reading comprehension with neural cascades
S Swayamdipta, AP Parikh, T Kwiatkowski
arXiv preprint arXiv:1711.00894, 2017
152017
Real-time open-domain question answering with dense-sparse phrase index
M Seo, J Lee, T Kwiatkowski, AP Parikh, A Farhadi, H Hajishirzi
arXiv preprint arXiv:1906.05807, 2019
112019
Phrase-indexed question answering: A new challenge for scalable document comprehension
M Seo, T Kwiatkowski, AP Parikh, A Farhadi, H Hajishirzi
arXiv preprint arXiv:1804.07726, 2018
102018
Probabilistic grammar induction from sentences and structured meanings
TM Kwiatkowski
The University of Edinburgh, 2012
52012
TyDi QA: A benchmark for information-seeking question answering in typologically diverse languages
JH Clark, E Choi, M Collins, D Garrette, T Kwiatkowski, V Nikolaev, ...
arXiv preprint arXiv:2003.05002, 2020
42020
Entities as experts: Sparse memory access with entity supervision
T Févry, LB Soares, N FitzGerald, E Choi, T Kwiatkowski
arXiv preprint arXiv:2004.07202, 2020
32020
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20