Explanations based on the missing: Towards contrastive explanations with pertinent negatives A Dhurandhar, PY Chen, R Luss, CC Tu, P Ting, K Shanmugam, P Das arXiv preprint arXiv:1802.07623, 2018 | 134 | 2018 |
Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks CC Tu, P Ting, PY Chen, S Liu, H Zhang, J Yi, CJ Hsieh, SM Cheng Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 742-749, 2019 | 126 | 2019 |
RACOON: A multiuser QoS design for mobile wireless body area networks SH Cheng, CY Huang, CC Tu Journal of medical systems 35 (5), 1277-1287, 2011 | 43 | 2011 |
Generating contrastive explanations with monotonic attribute functions R Luss, PY Chen, A Dhurandhar, P Sattigeri, Y Zhang, K Shanmugam, ... arXiv preprint arXiv:1905.12698, 2019 | 12 | 2019 |
FEAST: An automated feature selection framework for compilation tasks PS Ting, CC Tu, PY Chen, YY Lo, SM Cheng arXiv preprint arXiv:1610.09543, 2016 | 6 | 2016 |
Prediction with high dimensional regression via hierarchically structured Gaussian mixtures and latent variables CC Tu, F Forbes, B Lemasson, N Wang Journal of the Royal Statistical Society: Series C (Applied Statistics) 68 …, 2019 | 2 | 2019 |
Identifying influential links for event propagation on Twitter: A network of networks approach PY Chen, CC Tu, P Ting, YY Lo, D Koutra, AO Hero IEEE Transactions on Signal and Information Processing over Networks 5 (1 …, 2018 | 2 | 2018 |
Improving Prediction Efficacy Through Abnormality Detection and Data Preprocessing CC Tu, PY Chen, N Wang IEEE Access 7, 103794-103805, 2019 | | 2019 |
Enhancing Prediction Efficacy with High-Dimensional Input Via Structural Mixture Modeling of Local Linear Mappings CC Tu | | 2019 |
Structured Mixture of linear mappings in high dimension CC Tu, F Forbes, B Lemasson, N Wang | | 2018 |