Follow
Martin Eklund
Martin Eklund
Professor of Epidemiology, Karolinska Institutet
Verified email at ki.se
Title
Cited by
Cited by
Year
Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci
FR Schumacher, AA Al Olama, SI Berndt, S Benlloch, M Ahmed, ...
Nature genetics 50 (7), 928-936, 2018
9202018
Factors contributing to healthcare professional burnout during the COVID-19 pandemic: A rapid turnaround global survey
LA Morgantini, U Naha, H Wang, S Francavilla, Ö Acar, JM Flores, ...
PloS one 15 (9), e0238217, 2020
7922020
Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study
P Ström, K Kartasalo, H Olsson, L Solorzano, B Delahunt, DM Berney, ...
The Lancet Oncology 21 (2), 222-232, 2020
5712020
Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study
H Grönberg, J Adolfsson, M Aly, T Nordström, P Wiklund, Y Brandberg, ...
The lancet oncology 16 (16), 1667-1676, 2015
4662015
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
W Bulten, K Kartasalo, PHC Chen, P Ström, H Pinckaers, K Nagpal, Y Cai, ...
Nature medicine 28 (1), 154-163, 2022
4322022
Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
DV Conti, BF Darst, LC Moss, EJ Saunders, X Sheng, A Chou, ...
Nature genetics 53 (1), 65-75, 2021
4082021
MRI-targeted or standard biopsy in prostate cancer screening
M Eklund, F Jäderling, A Discacciati, M Bergman, M Annerstedt, M Aly, ...
New England journal of medicine 385 (10), 908-920, 2021
3452021
Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer
T Nordström, O Akre, M Aly, H Grönberg, M Eklund
Prostate cancer and prostatic diseases 21 (1), 57-63, 2018
2642018
Comparison between the four-kallikrein panel and prostate health index for predicting prostate cancer
T Nordström, A Vickers, M Assel, H Lilja, H Grönberg, M Eklund
European urology 68 (1), 139-146, 2015
2592015
Breast cancer screening in the precision medicine era: risk-based screening in a population-based trial
Y Shieh, M Eklund, L Madlensky, SD Sawyer, CK Thompson, ...
Journal of the National Cancer Institute 109 (5), djw290, 2017
2572017
Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study
K Dembrower, E Wåhlin, Y Liu, M Salim, K Smith, P Lindholm, M Eklund, ...
The Lancet Digital Health 2 (9), e468-e474, 2020
2512020
External evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammograms
M Salim, E Wåhlin, K Dembrower, E Azavedo, T Foukakis, Y Liu, K Smith, ...
JAMA oncology 6 (10), 1581-1588, 2020
2412020
Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination
U Norinder, L Carlsson, S Boyer, M Eklund
Journal of chemical information and modeling 54 (6), 1596-1603, 2014
2132014
Prostate cancer screening using a combination of risk-prediction, MRI, and targeted prostate biopsies (STHLM3-MRI): a prospective, population-based, randomised, open-label, non …
T Nordström, A Discacciati, M Bergman, M Clements, M Aly, M Annerstedt, ...
The Lancet Oncology 22 (9), 1240-1249, 2021
1642021
Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study
K Dembrower, A Crippa, E Colón, M Eklund, F Strand
The Lancet Digital Health 5 (10), e703-e711, 2023
1622023
Polygenic risk score improves prostate cancer risk prediction: results from the Stockholm-1 cohort study
M Aly, F Wiklund, J Xu, WB Isaacs, M Eklund, M D'Amato, J Adolfsson, ...
European urology 60 (1), 21-28, 2011
1572011
Bioclipse: an open source workbench for chemo-and bioinformatics
O Spjuth, T Helmus, EL Willighagen, S Kuhn, M Eklund, J Wagener, ...
BMC bioinformatics 8, 1-10, 2007
1572007
Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction
K Dembrower, Y Liu, H Azizpour, M Eklund, K Smith, P Lindholm, F Strand
Radiology 294 (2), 265-272, 2020
1532020
Population-based screening for cancer: hope and hype
Y Shieh, M Eklund, GF Sawaya, WC Black, BS Kramer, LJ Esserman
Nature reviews Clinical oncology 13 (9), 550-565, 2016
1532016
Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists
W Bulten, M Balkenhol, JJA Belinga, A Brilhante, A Çakır, L Egevad, ...
Modern Pathology 34 (3), 660-671, 2021
1482021
The system can't perform the operation now. Try again later.
Articles 1–20