Exponentially fitted two-step hybrid methods for y ″= f (x, y) R D’Ambrosio, E Esposito, B Paternoster Journal of Computational and Applied Mathematics 235 (16), 4888-4897, 2011 | 50 | 2011 |

Two-step hybrid collocation methods for y ″= f (x, y) R D’Ambrosio, M Ferro, B Paternoster Applied Mathematics Letters 22 (7), 1076-1080, 2009 | 46 | 2009 |

Two-step almost collocation methods for ordinary differential equations R D’Ambrosio, M Ferro, Z Jackiewicz, B Paternoster Numerical Algorithms 53 (2-3), 195-217, 2010 | 41 | 2010 |

Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations R D’Ambrosio, M Ferro, B Paternoster Mathematics and computers in simulation 81 (5), 1068-1084, 2011 | 40 | 2011 |

Construction of the EF-based Runge–Kutta methods revisited R D'Ambrosio, LG Ixaru, B Paternoster Computer Physics Communications 182 (2), 322-329, 2011 | 35 | 2011 |

Exponentially fitted two-step Runge–Kutta methods: construction and parameter selection R D’Ambrosio, E Esposito, B Paternoster Applied Mathematics and Computation 218 (14), 7468-7480, 2012 | 33 | 2012 |

Two-step Runge-Kutta methods with quadratic stability functions D Conte, R D’Ambrosio, Z Jackiewicz Journal of Scientific Computing 44 (2), 191-218, 2010 | 32 | 2010 |

Construction and implementation of highly stable two-step continuous methods for stiff differential systems R D’Ambrosio, Z Jackiewicz Mathematics and Computers in Simulation 81 (9), 1707-1728, 2011 | 31 | 2011 |

Continuous two-step Runge–Kutta methods for ordinary differential equations R D’Ambrosio, Z Jackiewicz Numerical Algorithms 54 (2), 169-193, 2010 | 29 | 2010 |

Numerical solution of a diffusion problem by exponentially fitted finite difference methods R D’Ambrosio, B Paternoster SpringerPlus 3 (1), 425, 2014 | 28 | 2014 |

Two-step diagonally-implicit collocation based methods for Volterra Integral Equations D Conte, R DʼAmbrosio, B Paternoster Applied Numerical Mathematics 62 (10), 1312-1324, 2012 | 26 | 2012 |

General linear methods for *y*′′ = *f* (*y* (*t*))R D’Ambrosio, E Esposito, B Paternoster Numerical Algorithms 61 (2), 331-349, 2012 | 26 | 2012 |

Some remarks on spaces of Morrey type L Caso, R D'Ambrosio, S Monsurrò Abstract and Applied Analysis 2010, 2010 | 26 | 2010 |

Revised exponentially fitted Runge–Kutta–Nyström methods R D’Ambrosio, B Paternoster, G Santomauro Applied Mathematics Letters 30, 56-60, 2014 | 25 | 2014 |

Long-term stability of multi-value methods for ordinary differential equations R D’Ambrosio, E Hairer Journal of Scientific Computing 60 (3), 627-640, 2014 | 24 | 2014 |

Numerical solution of reaction–diffusion systems of λ–ω type by trigonometrically fitted methods R D’Ambrosio, B Paternoster Journal of Computational and Applied Mathematics 294, 436-445, 2016 | 23 | 2016 |

Numerical solution of time fractional diffusion systems K Burrage, A Cardone, R D'Ambrosio, B Paternoster Applied Numerical Mathematics 116, 82-94, 2017 | 22 | 2017 |

Numerical integration of Hamiltonian problems by G-symplectic methods R D’Ambrosio, G De Martino, B Paternoster Advances in Computational Mathematics 40 (2), 553-575, 2014 | 21 | 2014 |

Parameter estimation in two-step hybrid methods for second order ordinary differential equations R D’Ambrosio, E Esposito, B Paternoster J. Math. Chem 50 (1), 155-168, 2012 | 21 | 2012 |

Search for highly stable two-step Runge–Kutta methods R DʼAmbrosio, G Izzo, Z Jackiewicz Applied Numerical Mathematics 62 (10), 1361-1379, 2012 | 20 | 2012 |