Daniele Calandriello
Daniele Calandriello
Research Scientist, DeepMind
Verifierad e-postadress på google.com
Titel
Citeras av
Citeras av
År
Safe policy iteration
M Pirotta, M Restelli, A Pecorino, D Calandriello
International Conference on Machine Learning, 307-315, 2013
562013
Sparse multi-task reinforcement learning
D Calandriello, A Lazaric, M Restelli
Advances in Neural Information Processing Systems, 819-827, 2014
362014
Physically interactive robogames: Definition and design guidelines
D Martinoia, D Calandriello, A Bonarini
Robotics and Autonomous Systems 61 (8), 739-748, 2013
302013
On fast leverage score sampling and optimal learning
A Rudi, D Calandriello, L Carratino, L Rosasco
Advances in Neural Information Processing Systems, 5672-5682, 2018
282018
Distributed adaptive sampling for kernel matrix approximation
D Calandriello, A Lazaric, M Valko
International Conference on Artificial Intelligence and Statistics, 2017
20*2017
Gaussian process optimization with adaptive sketching: Scalable and no regret
D Calandriello, L Carratino, A Lazaric, M Valko, L Rosasco
32nd Annual Conference on Learning Theory, 2019
182019
Second-Order Kernel Online Convex Optimization with Adaptive Sketching
D Calandriello, A Lazaric, M Valko
International Conference on Machine Learning, 2017
182017
Exact sampling of determinantal point processes with sublinear time preprocessing
M Derezinski, D Calandriello, M Valko
Advances in Neural Information Processing Systems, 11546-11558, 2019
152019
Efficient second-order online kernel learning with adaptive embedding
D Calandriello, A Lazaric, M Valko
Advances in Neural Information Processing Systems, 2017
152017
Analysis of Nyström method with sequential ridge leverage score sampling
D Calandriello, A Lazaric, M Valko
Proceedings of the Thirty-Second Conference on Uncertainty in Artificial …, 2016
12*2016
Semi-supervised information-maximization clustering
D Calandriello, G Niu, M Sugiyama
Neural networks 57, 103-111, 2014
102014
Improved large-scale graph learning through ridge spectral sparsification
D Calandriello, I Koutis, A Lazaric, M Valko
International Conference on Machine Learning, 687--696, 2018
72018
Statistical and computational trade-offs in kernel k-means
D Calandriello, L Rosasco
Advances in Neural Information Processing Systems, 9357-9367, 2018
42018
Efficient Sequential Learning in Structured and Constrained Environments
D Calandriello
32017
Constrained DMPs for feasible skill learning on humanoid robots
A Duan, R Camoriano, D Ferigo, D Calandriello, L Rosasco, D Pucci
2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), 1-6, 2018
22018
Pack only the essentials: Adaptive dictionary learning for kernel ridge regression
D Calandriello, A Lazaric, M Valko
Adaptive and Scalable Nonparametric Methods in Machine Learning, NeurIPS …, 2016
22016
Large-scale semi-supervised learning with online spectral graph sparsification
D Calandriello, A Lazaric, M Valko
Resource-Efficient Machine Learning workshop at International Conference on …, 2015
2*2015
Analysis of kelner and levin graph sparsification algorithm for a streaming setting
D Calandriello, A Lazaric, M Valko
arXiv preprint arXiv:1609.03769, 2016
12016
Incremental spectral sparsification for large-scale graph-based semi-supervised learning
D Calandriello, A Lazaric, M Valko, I Koutis
arXiv preprint arXiv:1601.05675, 2016
12016
Sampling from a -DPP without looking at all items
D Calandriello, M Dereziński, M Valko
arXiv preprint arXiv:2006.16947, 2020
2020
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20