Mario Lučić
Mario Lučić
Senior Research Scientist, Google Brain
Verifierad e-postadress på google.com - Startsida
Titel
Citeras av
Citeras av
År
Are GANs Created Equal? A Large-Scale Study
M Lucic, K Kurach, M Michalski, S Gelly, O Bousquet
Advances in Neural Information Processing Systems, 2017
4492017
Challenging common assumptions in the unsupervised learning of disentangled representations
F Locatello, S Bauer, M Lucic, S Gelly, B Schölkopf, O Bachem
International Conference on Machine Learning (Best Paper Award), 2019
2832019
A Large-Scale Study on Regularization and Normalization in GANs
K Kurach*, M Lucic*, X Zhai, M Michalski, S Gelly
International Conference on Machine Learning, 2018
137*2018
Fast and provably good seedings for k-means
O Bachem, M Lucic, H Hassani, A Krause
Advances in Neural Information Processing Systems, 2016
1062016
Recent advances in autoencoder-based representation learning
M Tschannen, O Bachem, M Lucic
Workshop on Bayesian Deep Learning (NeurIPS 2018), 2018
1032018
Assessing Generative Models via Precision and Recall
MSM Sajjadi, O Bachem, M Lucic, O Bousquet, S Gelly
Advances in Neural Information Processing Systems, 2018
992018
Self-Supervised GANs via Auxiliary Rotation Loss
T Chen, X Zhai, M Ritter, M Lucic, N Houlsby
Conference on Computer Vision and Pattern Recognition, 2019
87*2019
Approximate K-Means++ in Sublinear Time
O Bachem, M Lucic, SH Hassani, A Krause
AAAI Conference on Artificial Intelligence, 2016
872016
On Mutual Information Maximization for Representation Learning
M Tschannen, J Djolonga, PK Rubenstein, S Gelly, M Lucic
arXiv preprint arXiv:1907.13625, 2019
752019
High-Fidelity Image Generation With Fewer Labels
M Lučić, M Tschannen, M Ritter, X Zhai, O Bachem, S Gelly
International Conference on Machine Learning, 2019
63*2019
Scalable k-means clustering via lightweight coresets
O Bachem, M Lucic, A Krause
International Conference on Knowledge Discovery & Data Mining, 2018
572018
Practical coreset constructions for machine learning
O Bachem, M Lucic, A Krause
arXiv preprint arXiv:1703.06476, 2017
572017
Coresets for Nonparametric Estimation - the Case of DP-Means
O Bachem, M Lucic, A Krause
International Conference on Machine Learning, 2015
552015
Strong Coresets for Hard and Soft Bregman Clustering with Applications to Exponential Family Mixtures
M Lucic, O Bachem, A Krause
International Conference on Artificial Intelligence and Statistics, 2016
542016
Are GANs Created Equal?
M Lucic, K Kurach, M Michalski, S Gelly, O Bousquet
A large-scale study. arXiv e-prints 2 (4), 2017
462017
Training Gaussian mixture models at scale via coresets
M Lucic, M Faulkner, A Krause, D Feldman
The Journal of Machine Learning Research, 2017
45*2017
Fast and robust least squares estimation in corrupted linear models
B McWilliams, G Krummenacher, M Lucic, JM Buhmann
Advances in Neural Information Processing Systems, 2014
452014
On Self Modulation for Generative Adversarial Networks
T Chen, M Lucic, N Houlsby, S Gelly
International Conference on Learning Representations, 2019
362019
Deep Generative Models for Distribution-Preserving Lossy Compression
M Tschannen, E Agustsson, M Lucic
Advances in Neural Information Processing Systems, 2018
322018
The visual task adaptation benchmark
X Zhai, J Puigcerver, A Kolesnikov, P Ruyssen, C Riquelme, M Lucic, ...
arXiv preprint arXiv:1910.04867, 2019
302019
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20