Holonomy reductions of Cartan geometries and curved orbit decompositions A Čap, AR Gover, M Hammerl | 64 | 2014 |

Conformal structures associated to generic rank 2 distributions on 5-manifolds–characterization and Killing-field decomposition M Hammerl, K Sagerschnig SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 5, 081, 2009 | 38 | 2009 |

On a new normalization for tractor covariant derivatives M Hammerl, P Somberg, V Souček, J Šilhan Journal of the European Mathematical Society 14 (6), 1859-1883, 2012 | 31 | 2012 |

The twistor spinors of generic 2-and 3-distributions M Hammerl, K Sagerschnig Annals of Global Analysis and Geometry 39, 403-425, 2011 | 27 | 2011 |

Homogeneous Cartan geometries M Hammerl arXiv preprint math/0703627, 2007 | 22 | 2007 |

Normal BGG solutions and polynomials A Čap, AR Gover, M Hammerl International Journal of Mathematics 23 (11), 1250117, 2012 | 21 | 2012 |

Invariant prolongation of overdetermined PDEs in projective, conformal, and Grassmannian geometry M Hammerl, P Somberg, V Souček, J Šilhan Annals of Global Analysis and Geometry 42, 121-145, 2012 | 20 | 2012 |

Invariant prolongation of BGG-operators in conformal geometry M Hammerl arXiv preprint arXiv:0811.4122, 2008 | 18 | 2008 |

Natural prolongations of BGG-operators M Hammerl na, 2009 | 17 | 2009 |

Conformal Patterson-Walker metrics M Hammerl, K Sagerschnig, J Šilhan, A Taghavi-Chabert, V Žádník arXiv preprint arXiv:1604.08471, 2016 | 10 | 2016 |

Coupling solutions of BGG-equations in conformal spin geometry M Hammerl Journal of Geometry and Physics 62 (2), 213-223, 2012 | 8 | 2012 |

Conformal structures associated to generic rank 2 distributions on 5-manifolds—characterization and Killing-field decomposition. SIGMA Symmetry Integrability Geom. Methods … M Hammerl, K Sagerschnig | 8 | |

Fefferman–Graham ambient metrics of Patterson–Walker metrics M Hammerl, K Sagerschnig, J Šilhan, A Taghavi‐Chabert, V Žádník Bulletin of the London Mathematical Society 50 (2), 316-320, 2018 | 7 | 2018 |

A projective-to-conformal Fefferman-type construction M Hammerl, K Sagerschnig, J Šilhan, A Taghavi-Chabert, V Zádník SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 13, 081, 2017 | 5 | 2017 |

A non-normal Fefferman-type construction of split signature conformal structures admitting twistor spinors, ArXiv eprints, 2011 M Hammerl, K Sagerschnig | 5 | |

A non-normal Fefferman-type construction of split-signature conformal structures admitting twistor spinors M Hammerl, K Sagerschnig arXiv preprint arXiv:1109.4231, 2011 | 4 | 2011 |

Conformal holonomy equals ambient holonomy A Čap, A Gover, C Graham, M Hammerl Pacific Journal of Mathematics 285 (2), 303-318, 2016 | 3 | 2016 |

Modified conformal extensions M Hammerl, K Sagerschnig, J Šilhan, V Žádník Annals of Global Analysis and Geometry 64 (3), 18, 2023 | | 2023 |

Parabolic Compactification of Homogeneous Spaces A Čap, AR Gover, M Hammerl Journal of the Institute of Mathematics of Jussieu 20 (4), 1371-1408, 2021 | | 2021 |

Ambient and Conformal Holonomy M Hammerl | | 2012 |