Sigal Gottlieb
TitelCiteras avÅr
Total variation diminishing Runge-Kutta schemes
S Gottlieb, CW Shu
Mathematics of computation of the American Mathematical Society 67 (221), 73-85, 1998
16801998
Strong stability-preserving high-order time discretization methods
S Gottlieb, CW Shu, E Tadmor
SIAM review 43 (1), 89-112, 2001
16732001
Spectral methods for time-dependent problems
JS Hesthaven, S Gottlieb, D Gottlieb
Cambridge University Press, 2007
8642007
High order strong stability preserving time discretizations
S Gottlieb, DI Ketcheson, CW Shu
Journal of Scientific Computing 38 (3), 251-289, 2009
2632009
Strong stability preserving Runge-Kutta and multistep time discretizations
S Gottlieb, DI Ketcheson, CW Shu
World Scientific, 2011
2432011
On high order strong stability preserving Runge-Kutta and multi step time discretizations
S Gottlieb
Journal of Scientific Computing 25 (1-2), 105-128, 2005
1972005
Optimal implicit strong stability preserving Runge–Kutta methods
DI Ketcheson, CB Macdonald, S Gottlieb
Applied Numerical Mathematics 59 (2), 373-392, 2009
972009
High order time discretization methods with the strong stability property
S Gottlieb, CW Shu, E Tadmor
Copyright: Society for Industrial and Applied Mathematics, 2001
722001
Strong stability preserving properties of Runge–Kutta time discretization methods for linear constant coefficient operators
S Gottlieb, LAJ Gottlieb
Journal of Scientific Computing 18 (1), 83-109, 2003
472003
Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations
S Gottlieb, F Tone, C Wang, X Wang, D Wirosoetisno
SIAM Journal on Numerical Analysis 50 (1), 126-150, 2012
352012
Strong stability preserving two-step Runge–Kutta methods
DI Ketcheson, S Gottlieb, CB Macdonald
SIAM Journal on Numerical Analysis 49 (6), 2618-2639, 2011
322011
Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ equation
S Gottlieb, C Wang
Journal of Scientific Computing 53 (1), 102-128, 2012
302012
Optimal strong-stability-preserving time-stepping schemes with fast downwind spatial discretizations
S Gottlieb, SJ Ruuth
Journal of Scientific Computing 27 (1-3), 289-303, 2006
302006
A review of David Gottlieb’s work on the resolution of the Gibbs phenomenon
S Gottlieb, JH Jung, S Kim
Communications in Computational Physics 9 (3), 497-519, 2011
282011
A numerical study of diagonally split Runge–Kutta methods for PDEs with discontinuities
CB Macdonald, S Gottlieb, SJ Ruuth
Journal of Scientific Computing 36 (1), 89-112, 2008
252008
A fifth order flux implicit WENO method
S Gottlieb, JS Mullen, SJ Ruuth
Journal of Scientific Computing 27 (1-3), 271-287, 2006
252006
Recovering high-order accuracy in WENO computations of steady-state hyperbolic systems
S Gottlieb, D Gottlieb, CW Shu
Journal of Scientific Computing 28 (2-3), 307-318, 2006
222006
Explicit strong stability preserving multistep Runge–Kutta methods
C Bresten, S Gottlieb, Z Grant, D Higgs, D Ketcheson, A Németh
Mathematics of Computation 86 (304), 747-769, 2017
212017
A Fourier pseudospectral method for the “good” Boussinesq equation with second‐order temporal accuracy
K Cheng, W Feng, S Gottlieb, C Wang
Numerical Methods for Partial Differential Equations 31 (1), 202-224, 2015
212015
Explicit strong stability preserving multistage two-derivative time-stepping schemes
AJ Christlieb, S Gottlieb, Z Grant, DC Seal
Journal of Scientific Computing 68 (3), 914-942, 2016
192016
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20