Elliot Creager
Elliot Creager
Verifierad e-postadress på cs.toronto.edu - Startsida
Titel
Citeras av
Citeras av
År
Learning adversarially fair and transferable representations
D Madras, E Creager, T Pitassi, R Zemel
International Conference on Machine Learning, 3384-3393, 2018
2292018
Explaining Image Classifiers by Counterfactual Generation
CH Chang, E Creager, A Goldenberg, D Duvenaud
arXiv preprint arXiv:1807.08024, 2018
892018
Flexibly fair representation learning by disentanglement
E Creager, D Madras, JH Jacobsen, M Weis, K Swersky, T Pitassi, ...
International Conference on Machine Learning, 1436-1445, 2019
862019
Fairness through causal awareness: Learning causal latent-variable models for biased data
D Madras, E Creager, T Pitassi, R Zemel
Proceedings of the conference on fairness, accountability, and transparency …, 2019
562019
Optimizing long-term social welfare in recommender systems: A constrained matching approach
M Mladenov, E Creager, O Ben-Porat, K Swersky, R Zemel, C Boutilier
International Conference on Machine Learning, 6987-6998, 2020
112020
Causal modeling for fairness in dynamical systems
E Creager, D Madras, T Pitassi, R Zemel
International Conference on Machine Learning, 2185-2195, 2020
92020
Counterfactual Data Augmentation using Locally Factored Dynamics
S Pitis, E Creager, A Garg
arXiv preprint arXiv:2007.02863, 2020
92020
Interpreting neural network classifications with variational dropout saliency maps
CH Chang, E Creager, A Goldenberg, D Duvenaud
Proc. NIPS 1 (2), 1-9, 2017
92017
Is independence all you need? on the generalization of representations learned from correlated data
F Träuble, E Creager, N Kilbertus, A Goyal, F Locatello, B Schölkopf, ...
arXiv preprint arXiv:2006.07886, 2020
72020
Nonnegative tensor factorization with frequency modulation cues for blind audio source separation
E Creager, ND Stein, R Badeau, P Depalle
arXiv preprint arXiv:1606.00037, 2016
72016
Environment Inference for Invariant Learning
E Creager, JH Jacobsen, R Zemel
ICML 2020 Workshop on Uncertainty & Robustness in Deep Learning, 2020
6*2020
Gradient-based optimization of neural network architecture
W Grathwohl, E Creager, SKS Ghasemipour, R Zemel
62018
Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification
R Adragna, E Creager, D Madras, R Zemel
arXiv preprint arXiv:2011.06485, 2020
42020
Fairness through causal awareness: Learning latent-variable models for biased data
D Madras, E Creager, T Pitassi, R Zemel
arXiv preprint arXiv:1809.02519, 2018
32018
Musical source separation by coherent frequency modulation cues
E Creager
McGill University (Canada), 2016
32016
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–15