Follow
Daniele Maria Papetti
Title
Cited by
Cited by
Year
Surfing on fitness landscapes: A boost on optimization by Fourier surrogate modeling
L Manzoni, DM Papetti, P Cazzaniga, S Spolaor, G Mauri, D Besozzi, ...
Entropy 22 (3), 285, 2020
162020
Large T cell clones expressing immune checkpoints increase during multiple myeloma evolution and predict treatment resistance
C Botta, C Perez, M Larrayoz, N Puig, MT Cedena, R Termini, ...
Nature communications 14 (1), 5825, 2023
102023
An accurate and time-efficient deep learning-based system for automated segmentation and reporting of cardiac magnetic resonance-detected ischemic scar
DM Papetti, K Van Abeelen, R Davies, R Menč, F Heilbron, FP Perelli, ...
Computer methods and programs in biomedicine 229, 107321, 2023
102023
If you can’t beat it, squash it: Simplify global optimization by evolving dilation functions
DM Papetti, DA Ashlock, P Cazzaniga, D Besozzi, MS Nobile
2021 IEEE Congress on Evolutionary Computation (CEC), 1414-1422, 2021
62021
On the automatic calibration of fully analogical spiking neuromorphic chips
DM Papetti, S Spolaor, D Besozzi, P Cazzaniga, M Antoniotti, MS Nobile
2020 International Joint Conference on Neural Networks (IJCNN), 1-8, 2020
52020
Barcode demultiplexing of nanopore sequencing raw signals by unsupervised machine learning
DM Papetti, S Spolaor, I Nazari, A Tirelli, T Leonardi, C Caprioli, ...
Frontiers in Bioinformatics 3, 1067113, 2023
42023
Local bubble dilation functions: Hypersphere-bounded landscape deformations simplify global optimization
DM Papetti, V Coelho, DA Ashlock, P Cazzaniga, S Spolaor, D Besozzi, ...
2022 IEEE Conference on Computational Intelligence in Bioinformatics and …, 2022
32022
Which random is the best random? A study on sampling methods in Fourier surrogate modeling
MS Nobile, S Spolaor, P Cazzaniga, DM Papetti, D Besozzi, DA Ashlock, ...
2020 IEEE Congress on Evolutionary Computation (CEC), 1-8, 2020
32020
Simplifying Fitness Landscapes Using Dilation Functions Evolved With Genetic Programming
DM Papetti, A Tangherloni, D Farinati, P Cazzaniga, L Vanneschi
IEEE Computational Intelligence Magazine 18 (1), 22-31, 2023
22023
Shaping and dilating the fitness landscape for parameter estimation in stochastic biochemical models
MS Nobile, DM Papetti, S Spolaor, P Cazzaniga, L Manzoni
Applied Sciences 12 (13), 6671, 2022
22022
Dark blood ischemic LGE segmentation using a deep learning approach
C Torlasco, D Papetti, R Mene, J Artico, A Seraphim, LP Badano, ...
European Heart Journal-Cardiovascular Imaging 22 (Supplement_2), jeab090. 020, 2021
22021
Estimation of Fuzzy Models from Mixed Data Sets with pyFUME
DM Papetti, C Fuchs, V Coelho, U Kaymak, MS Nobile
2023 IEEE Conference on Computational Intelligence in Bioinformatics and …, 2023
12023
Machine Learning Streamlines the Morphometric Characterization and Multiclass Segmentation of Nuclei in Different Follicular Thyroid Lesions: Everything in a NUTSHELL
V L’Imperio, V Coelho, G Cazzaniga, DM Papetti, F Del Carro, G Capitoli, ...
Modern Pathology 37 (12), 100608, 2024
2024
Meta-problems in global optimization: new perspectives from Computational Intelligence
D Papetti
Universitą degli Studi di Milano-Bicocca, 2024
2024
Evolving Dilation Functions for Parameter Estimation
DM Papetti, V Coelho
2023 IEEE Conference on Computational Intelligence in Bioinformatics and …, 2023
2023
Method for Determining an Optimal Inversion Time for an" Inversion Recovery" Radio Frequency Pulse Sequence of a Magnetic Resonance for Acquiring Late Images After …
D Papetti, C Torlasco, M Nobile, D Besozzi
2023
The Domination Game: Dilating Bubbles to Fill Up Pareto Fronts
V Coelho, DM Papetti, A Tangherloni, P Cazzaniga, D Besozzi, MS Nobile
2023 IEEE Congress on Evolutionary Computation (CEC), 01-08, 2023
2023
Use of artificial intelligence to automatically predict the optimal patient-specific inversion time for late gadolinium enhancement imaging. Tool development and clinical …
C Torlasco, DM Papetti, S Castelletti, M Sabatini, G Muscogiuri, ...
European Heart Journal-Cardiovascular Imaging 24 (Supplement_1), jead119. 103, 2023
2023
506 TECHNIQUES OF ARTIFICIAL INTELLIGENCE FOR THE DETERMINATION OF THE OPTIMAL INVERSION TIME: THE THAITI PROJECT
C Torlasco, DM Papetti, M Sabatini, G Muscogiuri, S Castelletti, H Xue, ...
European Heart Journal Supplements 24 (Supplement_K), suac121. 243, 2022
2022
Metodo per determinare un tempo di inversione ottimale per una sequenza “Inversion Recovery” di risonanza magnetica utilizzabile per l’acquisizione di immagini tardive dopo …
D Besozzi, DM Papetti, C Torlasco, MS Nobile
2022
The system can't perform the operation now. Try again later.
Articles 1–20