Surfing on fitness landscapes: A boost on optimization by Fourier surrogate modeling L Manzoni, DM Papetti, P Cazzaniga, S Spolaor, G Mauri, D Besozzi, ... Entropy 22 (3), 285, 2020 | 16 | 2020 |
Large T cell clones expressing immune checkpoints increase during multiple myeloma evolution and predict treatment resistance C Botta, C Perez, M Larrayoz, N Puig, MT Cedena, R Termini, ... Nature communications 14 (1), 5825, 2023 | 10 | 2023 |
An accurate and time-efficient deep learning-based system for automated segmentation and reporting of cardiac magnetic resonance-detected ischemic scar DM Papetti, K Van Abeelen, R Davies, R Menč, F Heilbron, FP Perelli, ... Computer methods and programs in biomedicine 229, 107321, 2023 | 10 | 2023 |
If you can’t beat it, squash it: Simplify global optimization by evolving dilation functions DM Papetti, DA Ashlock, P Cazzaniga, D Besozzi, MS Nobile 2021 IEEE Congress on Evolutionary Computation (CEC), 1414-1422, 2021 | 6 | 2021 |
On the automatic calibration of fully analogical spiking neuromorphic chips DM Papetti, S Spolaor, D Besozzi, P Cazzaniga, M Antoniotti, MS Nobile 2020 International Joint Conference on Neural Networks (IJCNN), 1-8, 2020 | 5 | 2020 |
Barcode demultiplexing of nanopore sequencing raw signals by unsupervised machine learning DM Papetti, S Spolaor, I Nazari, A Tirelli, T Leonardi, C Caprioli, ... Frontiers in Bioinformatics 3, 1067113, 2023 | 4 | 2023 |
Local bubble dilation functions: Hypersphere-bounded landscape deformations simplify global optimization DM Papetti, V Coelho, DA Ashlock, P Cazzaniga, S Spolaor, D Besozzi, ... 2022 IEEE Conference on Computational Intelligence in Bioinformatics and …, 2022 | 3 | 2022 |
Which random is the best random? A study on sampling methods in Fourier surrogate modeling MS Nobile, S Spolaor, P Cazzaniga, DM Papetti, D Besozzi, DA Ashlock, ... 2020 IEEE Congress on Evolutionary Computation (CEC), 1-8, 2020 | 3 | 2020 |
Simplifying Fitness Landscapes Using Dilation Functions Evolved With Genetic Programming DM Papetti, A Tangherloni, D Farinati, P Cazzaniga, L Vanneschi IEEE Computational Intelligence Magazine 18 (1), 22-31, 2023 | 2 | 2023 |
Shaping and dilating the fitness landscape for parameter estimation in stochastic biochemical models MS Nobile, DM Papetti, S Spolaor, P Cazzaniga, L Manzoni Applied Sciences 12 (13), 6671, 2022 | 2 | 2022 |
Dark blood ischemic LGE segmentation using a deep learning approach C Torlasco, D Papetti, R Mene, J Artico, A Seraphim, LP Badano, ... European Heart Journal-Cardiovascular Imaging 22 (Supplement_2), jeab090. 020, 2021 | 2 | 2021 |
Estimation of Fuzzy Models from Mixed Data Sets with pyFUME DM Papetti, C Fuchs, V Coelho, U Kaymak, MS Nobile 2023 IEEE Conference on Computational Intelligence in Bioinformatics and …, 2023 | 1 | 2023 |
Machine Learning Streamlines the Morphometric Characterization and Multiclass Segmentation of Nuclei in Different Follicular Thyroid Lesions: Everything in a NUTSHELL V L’Imperio, V Coelho, G Cazzaniga, DM Papetti, F Del Carro, G Capitoli, ... Modern Pathology 37 (12), 100608, 2024 | | 2024 |
Meta-problems in global optimization: new perspectives from Computational Intelligence D Papetti Universitą degli Studi di Milano-Bicocca, 2024 | | 2024 |
Evolving Dilation Functions for Parameter Estimation DM Papetti, V Coelho 2023 IEEE Conference on Computational Intelligence in Bioinformatics and …, 2023 | | 2023 |
Method for Determining an Optimal Inversion Time for an" Inversion Recovery" Radio Frequency Pulse Sequence of a Magnetic Resonance for Acquiring Late Images After … D Papetti, C Torlasco, M Nobile, D Besozzi | | 2023 |
The Domination Game: Dilating Bubbles to Fill Up Pareto Fronts V Coelho, DM Papetti, A Tangherloni, P Cazzaniga, D Besozzi, MS Nobile 2023 IEEE Congress on Evolutionary Computation (CEC), 01-08, 2023 | | 2023 |
Use of artificial intelligence to automatically predict the optimal patient-specific inversion time for late gadolinium enhancement imaging. Tool development and clinical … C Torlasco, DM Papetti, S Castelletti, M Sabatini, G Muscogiuri, ... European Heart Journal-Cardiovascular Imaging 24 (Supplement_1), jead119. 103, 2023 | | 2023 |
506 TECHNIQUES OF ARTIFICIAL INTELLIGENCE FOR THE DETERMINATION OF THE OPTIMAL INVERSION TIME: THE THAITI PROJECT C Torlasco, DM Papetti, M Sabatini, G Muscogiuri, S Castelletti, H Xue, ... European Heart Journal Supplements 24 (Supplement_K), suac121. 243, 2022 | | 2022 |
Metodo per determinare un tempo di inversione ottimale per una sequenza “Inversion Recovery” di risonanza magnetica utilizzabile per l’acquisizione di immagini tardive dopo … D Besozzi, DM Papetti, C Torlasco, MS Nobile | | 2022 |