Ying Fu
Ying Fu
Verifierad e-postadress på bit.edu.cn - Startsida
Titel
Citeras av
Citeras av
År
Hyperreconnet: Joint coded aperture optimization and image reconstruction for compressive hyperspectral imaging
L Wang, T Zhang, Y Fu, H Huang
IEEE Transactions on Image Processing 28 (5), 2257-2270, 2018
332018
Exploiting spectral-spatial correlation for coded hyperspectral image restoration
Y Fu, Y Zheng, I Sato, Y Sato
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016
332016
Separating reflective and fluorescent components using high frequency illumination in the spectral domain
Y Fu, A Lam, I Sato, T Okabe, Y Sato
Proceedings of the IEEE International Conference on Computer Vision, 457-464, 2013
332013
Adaptive spatial-spectral dictionary learning for hyperspectral image restoration
Y Fu, A Lam, I Sato, Y Sato
International Journal of Computer Vision 122 (2), 228-245, 2017
292017
Single image reflection removal exploiting misaligned training data and network enhancements
K Wei, J Yang, Y Fu, D Wipf, H Huang
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2019
262019
Joint camera spectral sensitivity selection and hyperspectral image recovery
Y Fu, T Zhang, Y Zheng, D Zhang, H Huang
Proceedings of the European Conference on Computer Vision (ECCV), 788-804, 2018
232018
Incremental learning using conditional adversarial networks
Y Xiang, Y Fu, P Ji, H Huang
Proceedings of the IEEE International Conference on Computer Vision, 6619-6628, 2019
212019
Reflectance and fluorescence spectral recovery via actively lit RGB images
Y Fu, A Lam, I Sato, T Okabe, Y Sato
IEEE transactions on pattern analysis and machine intelligence 38 (7), 1313-1326, 2015
182015
Hyperspectral image reconstruction using a deep spatial-spectral prior
L Wang, C Sun, Y Fu, MH Kim, H Huang
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2019
172019
Adaptive spatial-spectral dictionary learning for hyperspectral image denoising
Y Fu, A Lam, I Sato, Y Sato
Proceedings of the IEEE International Conference on Computer Vision, 343-351, 2015
162015
Interreflection removal using fluorescence
Y Fu, A Lam, Y Matsushita, I Sato, Y Sato
European Conference on Computer Vision, 203-217, 2014
152014
Hyperspectral image super-resolution with optimized rgb guidance
Y Fu, T Zhang, Y Zheng, D Zhang, H Huang
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2019
142019
Hyperspectral image super-resolution with a mosaic RGB image
Y Fu, Y Zheng, H Huang, I Sato, Y Sato
IEEE Transactions on Image Processing 27 (11), 5539-5552, 2018
142018
PIRM2018 challenge on spectral image super-resolution: methods and results
M Shoeiby, A Robles-Kelly, R Timofte, R Zhou, F Lahoud, S Susstrunk, ...
Proceedings of the European Conference on Computer Vision (ECCV), 0-0, 2018
102018
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising
K Wei, Y Fu, J Yang, H Huang
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
92020
Computational hyperspectral imaging based on dimension-discriminative low-rank tensor recovery
S Zhang, L Wang, Y Fu, X Zhong, H Huang
Proceedings of the IEEE International Conference on Computer Vision, 10183-10192, 2019
92019
Spectral reflectance recovery from a single rgb image
Y Fu, Y Zheng, L Zhang, H Huang
IEEE Transactions on Computational Imaging 4 (3), 382-394, 2018
92018
Separating fluorescent and reflective components by using a single hyperspectral image
Y Zheng, Y Fu, A Lam, I Sato, Y Sato
Proceedings of the IEEE International Conference on Computer Vision, 3523-3531, 2015
92015
Reflectance and fluorescent spectra recovery based on fluorescent chromaticity invariance under varying illumination
Y Fu, A Lam, Y Kobashi, I Sato, T Okabe, Y Sato
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2014
92014
Dynamic shape capture via periodical-illumination optical flow estimation and multi-view photometric stereo
Y Fu, Y Liu, Q Dai
2011 International Conference on 3D Imaging, Modeling, Processing …, 2011
92011
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20