Mingyi Hong
Mingyi Hong
Assistant Professor, University of Minnesota
Verifierad e-postadress på umn.edu - Startsida
Titel
Citeras av
Citeras av
År
A unified convergence analysis of block successive minimization methods for nonsmooth optimization
M Razaviyayn, M Hong, ZQ Luo
SIAM Journal on Optimization 23 (2), 1126-1153, 2013
6852013
On the linear convergence of the alternating direction method of multipliers
M Hong, ZQ Luo
Mathematical Programming, 2017, 2012
583*2012
Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems
M Hong, ZQ Luo, M Razaviyayn
SIAM Journal on Optimization 26 (1), 337-364, 2016
4942016
Joint base station clustering and beamformer design for partial coordinated transmission in heterogeneous networks
M Hong, R Sun, H Baligh, ZQ Luo
IEEE Journal on Selected Areas in Communications 31 (2), 226-240, 2013
2852013
Learning to optimize: Training deep neural networks for interference management
H Sun, X Chen, Q Shi, M Hong, X Fu, ND Sidiropoulos
IEEE Transactions on Signal Processing 66 (20), 5438-5453, 2018
272*2018
Multi-agent distributed optimization via inexact consensus ADMM
TH Chang, M Hong, X Wang
IEEE Transactions on Signal Processing 63 (2), 482-497, 2014
2472014
Towards k-means-friendly spaces: Simultaneous deep learning and clustering
B Yang, X Fu, ND Sidiropoulos, M Hong
international conference on machine learning, 3861-3870, 2017
2402017
A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing
M Hong, M Razaviyayn, ZQ Luo, JS Pang
IEEE Signal Processing Magazine 33 (1), 57-77, 2015
2042015
Transmit solutions for MIMO wiretap channels using alternating optimization
Q Li, M Hong, HT Wai, YF Liu, WK Ma, ZQ Luo
IEEE Journal on Selected Areas in Communications 31 (9), 1714-1727, 2013
1532013
Iteration complexity analysis of block coordinate descent methods
M Hong, X Wang, M Razaviyayn, ZQ Luo
Mathematical Programming 163 (1-2), 85-114, 2017
1182017
Asynchronous distributed ADMM for large-scale optimization—Part I: Algorithm and convergence analysis
TH Chang, M Hong, WC Liao, X Wang
IEEE Transactions on Signal Processing 64 (12), 3118-3130, 2016
1112016
Asynchronous distributed ADMM for large-scale optimization—Part I: Algorithm and convergence analysis
TH Chang, M Hong, WC Liao, X Wang
IEEE Transactions on Signal Processing 64 (12), 3118-3130, 2016
1112016
Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming
Q Shi, C Peng, W Xu, M Hong, Y Cai
IEEE Transactions on Signal Processing 64 (4), 842-854, 2015
1052015
Base station activation and linear transceiver design for optimal resource management in heterogeneous networks
WC Liao, M Hong, YF Liu, ZQ Luo
IEEE Transactions on Signal Processing 62 (15), 3939-3952, 2014
992014
System and method for joint power allocation and routing for software defined networks
WC Liao, M Hong, ZQ Luo, H Farmanbar, X Li, H Zhang
US Patent 10,321,409, 2019
922019
On the convergence of a class of adam-type algorithms for non-convex optimization
X Chen, S Liu, R Sun, M Hong
International Conference on Learning Representations, 2018
882018
A distributed, asynchronous, and incremental algorithm for nonconvex optimization: an ADMM approach
M Hong
IEEE Transactions on Control of Network Systems 5 (3), 935-945, 2017
84*2017
Linear transceiver design for a MIMO interfering broadcast channel achieving max–min fairness
M Razaviyayn, M Hong, ZQ Luo
Signal Processing 93 (12), 3327-3340, 2013
792013
Joint downlink base station association and power control for max-min fairness: Computation and complexity
R Sun, M Hong, ZQ Luo
IEEE Journal on Selected Areas in Communications 33 (6), 1040-1054, 2015
742015
Signal processing and optimal resource allocation for the interference channel
M Hong, ZQ Luo
Academic Press Library in Signal Processing 2, 409-469, 2014
722014
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20