Kris De Brabanter
Kris De Brabanter
Associate Professor of Statistics and Industrial Manufacturing & Systems Engineering
Verified email at iastate.edu - Homepage
Title
Cited by
Cited by
Year
LS-SVMlab toolbox user's guide: version 1.7
K De Brabanter, P Karsmakers, F Ojeda, C Alzate, J De Brabanter, ...
Katholieke Universiteit Leuven, 2010
2872010
Approximate confidence and prediction intervals for least squares support vector regression
K De Brabanter, J De Brabanter, JAK Suykens, B De Moor
IEEE Transactions on Neural Networks 22 (1), 110-120, 2010
1222010
Optimized fixed-size kernel models for large data sets
K De Brabanter, J De Brabanter, JAK Suykens, B De Moor
Computational Statistics & Data Analysis 54 (6), 1484-1504, 2010
1212010
Robustness of kernel based regression: a comparison of iterative weighting schemes
K De Brabanter, K Pelckmans, J De Brabanter, M Debruyne, JAK Suykens, ...
International Conference on Artificial Neural Networks, 100-110, 2009
672009
Derivative Estimation with Local Polynomial Fitting.
K De Brabanter, J De Brabanter, B De Moor, I Gijbels
Journal of Machine Learning Research 14 (1), 2013
552013
Least-squares support vector machines for the identification of Wiener–Hammerstein systems
T Falck, P Dreesen, K De Brabanter, K Pelckmans, B De Moor, ...
Control Engineering Practice 20 (11), 1165-1174, 2012
542012
Kernel Regression in the Presence of Correlated Errors.
K De Brabanter, J De Brabanter, JAK Suykens, B De Moor
Journal of Machine Learning Research 12 (6), 2011
432011
Least squares support vector regression with applications to large-scale data: a statistical approach
K De Brabanter
Faculty of Engineering, KU Leuven, Katholieke Universiteit Leuven, 2011
322011
Fixed-size LS-SVM applied to the Wiener-Hammerstein benchmark
K De Brabanter, P Dreesen, P Karsmakers, K Pelckmans, J De Brabanter, ...
IFAC Proceedings Volumes 42 (10), 826-831, 2009
312009
Confidence bands for least squares support vector machine classifiers: A regression approach
K De Brabanter, P Karsmakers, J De Brabanter, JAK Suykens, B De Moor
Pattern Recognition 45 (6), 2280-2287, 2012
282012
Nonparametric regression via StatLSSVM
K De Brabanter, J Suykens, B De Moor
Journal of Statistical Software 55 (2), 1-22, 2013
252013
Sparse conjugate directions pursuit with application to fixed-size kernel models
P Karsmakers, K Pelckmans, K De Brabanter, JAK Suykens
Machine learning 85 (1-2), 109-148, 2011
252011
Sparse LS-SVMs with L0–norm minimization
J Lopez, K De Brabanter, JR Dorronsoro, JAK Suykens
Proceedings of the European Symposium on Artificial Neural Networks …, 2011
232011
Predicting breast cancer using an expression values weighted clinical classifier
M Thomas, K De Brabanter, JAK Suykens, B De Moor
BMC bioinformatics 15 (1), 411, 2014
192014
New bandwidth selection criterion for Kernel PCA: Approach to dimensionality reduction and classification problems
M Thomas, K De Brabanter, B De Moor
BMC bioinformatics 15 (1), 137, 2014
172014
Identification of a pilot scale distillation column: a kernel based approach
B Huyck, K De Brabanter, F Logist, J De Brabanter, J Van Impe, ...
IFAC Proceedings Volumes 44 (1), 471-476, 2011
172011
Learning constrained task similarities in graphregularized multi-task learning
R Flamary, A Rakotomamonjy, G Gasso
Regularization, Optimization, Kernels, and Support Vector Machines, 103, 2014
142014
Wavelet filter design for pavement roughness analysis
A Alhasan, DJ White, K De Brabanter
Computer‐Aided Civil and Infrastructure Engineering 31 (12), 907-920, 2016
132016
Spatial pavement roughness from stationary laser scanning
A Alhasan, DJ White, K De Brabanter
International Journal of Pavement Engineering 18 (1), 83-96, 2017
122017
A data set of bloodstain patterns for teaching and research in bloodstain pattern analysis: Impact beating spatters
D Attinger, Y Liu, T Bybee, K De Brabanter
Data in brief 18, 648-654, 2018
112018
The system can't perform the operation now. Try again later.
Articles 1–20