An adaptive IHS pan-sharpening method S Rahmani, M Strait, D Merkurjev, M Moeller, T Wittman IEEE Geoscience and Remote Sensing Letters 7 (4), 746-750, 2010 | 327 | 2010 |
A convex model for nonnegative matrix factorization and dimensionality reduction on physical space E Esser, M Moller, S Osher, G Sapiro, J Xin IEEE Transactions on Image Processing 21 (7), 3239-3252, 2012 | 177 | 2012 |
Learning proximal operators: Using denoising networks for regularizing inverse imaging problems T Meinhardt, M Moller, C Hazirbas, D Cremers Proceedings of the IEEE International Conference on Computer Vision, 1781-1790, 2017 | 146 | 2017 |
A variational approach for sharpening high dimensional images M Möller, T Wittman, AL Bertozzi, M Burger SIAM Journal on Imaging Sciences 5 (1), 150-178, 2012 | 77 | 2012 |
Variational depth from focus reconstruction M Moeller, M Benning, C Schönlieb, D Cremers IEEE Transactions on Image Processing 24 (12), 5369-5378, 2015 | 62 | 2015 |
A variational approach to hyperspectral image fusion M Moeller, T Wittman, AL Bertozzi Algorithms and Technologies for Multispectral, Hyperspectral, and …, 2009 | 59 | 2009 |
Spectral decompositions using one-homogeneous functionals M Burger, G Gilboa, M Moeller, L Eckardt, D Cremers SIAM Journal on Imaging Sciences 9 (3), 1374-1408, 2016 | 52 | 2016 |
An adaptive inverse scale space method for compressed sensing M Burger, M Möller, M Benning, S Osher Mathematics of Computation 82 (281), 269-299, 2013 | 48 | 2013 |
Collaborative total variation: a general framework for vectorial TV models J Duran, M Moeller, C Sbert, D Cremers SIAM Journal on Imaging Sciences 9 (1), 116-151, 2016 | 47 | 2016 |
The primal-dual hybrid gradient method for semiconvex splittings T Möllenhoff, E Strekalovskiy, M Moeller, D Cremers SIAM Journal on Imaging Sciences 8 (2), 827-857, 2015 | 45 | 2015 |
Point-wise map recovery and refinement from functional correspondence E Rodolà, M Moeller, D Cremers arXiv preprint arXiv:1506.05603, 2015 | 42 | 2015 |
Sublabel-accurate relaxation of nonconvex energies T Mollenhoff, E Laude, M Moeller, J Lellmann, D Cremers Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016 | 37 | 2016 |
Variational wavelet pan-sharpening M Moeller, T Wittman, AL Bertozzi CAM Report, 08-81, 2008 | 32 | 2008 |
A dual split Bregman method for fast ℓ¹ minimization Y Yang, M Möller, S Osher Mathematics of computation 82 (284), 2061-2085, 2013 | 26 | 2013 |
Inverting Gradients--How easy is it to break privacy in federated learning? J Geiping, H Bauermeister, H Dröge, M Moeller arXiv preprint arXiv:2003.14053, 2020 | 25 | 2020 |
Proximal backpropagation T Frerix, T Möllenhoff, M Moeller, D Cremers arXiv preprint arXiv:1706.04638, 2017 | 25 | 2017 |
Low rank priors for color image regularization T Möllenhoff, E Strekalovskiy, M Möller, D Cremers International Workshop on Energy Minimization Methods in Computer Vision and …, 2015 | 24 | 2015 |
A framework for automated cell tracking in phase contrast microscopic videos based on normal velocities M Möller, M Burger, P Dieterich, A Schwab Journal of Visual Communication and Image Representation 25 (2), 396-409, 2014 | 23 | 2014 |
Spectral representations of one-homogeneous functionals M Burger, L Eckardt, G Gilboa, M Moeller International Conference on Scale Space and Variational Methods in Computer …, 2015 | 21 | 2015 |
Color Bregman TV M Moeller, EM Brinkmann, M Burger, T Seybold SIAM Journal on Imaging Sciences 7 (4), 2771-2806, 2014 | 20 | 2014 |