Följ
Clemens Frederic Patzschke
Clemens Frederic Patzschke
Researcher in Chemical Engineering, Imperial College London
Verifierad e-postadress på ic.ac.uk
Titel
Citeras av
Citeras av
År
Closing the carbon cycle to maximise climate change mitigation: power-to-methanol vs. power-to-direct air capture
HA Daggash, CF Patzschke, CF Heuberger, L Zhu, K Hellgardt, ...
Sustainable Energy & Fuels 2 (6), 1153-1169, 2018
792018
Methane pyrolysis in monovalent alkali halide salts: Kinetics and pyrolytic carbon properties
B Parkinson, CF Patzschke, D Nikolis, S Raman, DC Dankworth, ...
International Journal of Hydrogen Energy 46 (9), 6225-6238, 2021
612021
Co-Mn catalysts for H2 production via methane pyrolysis in molten salts
CF Patzschke, B Parkinson, JJ Willis, P Nandi, AM Love, S Raman, ...
Chemical Engineering Journal 414, 128730, 2021
512021
Molten salt bubble columns for low-carbon hydrogen from CH4 pyrolysis: mass transfer and carbon formation mechanisms
B Parkinson, CF Patzschke, D Nikolis, S Raman, K Hellgardt
Chemical Engineering Journal 417, 127407, 2021
382021
Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage
M High, CF Patzschke, L Zheng, D Zeng, O Gavalda-Diaz, N Ding, ...
Nature Communications 13 (5109), 2022
202022
Co-precipitated Cu-Mn mixed metal oxides as oxygen carriers for chemical looping processes
CF Patzschke, ME Boot-Handford, Q Song, PS Fennell
Chemical Engineering Journal 407, 127093, 2021
182021
Density and viscosity of partially carbonated aqueous solutions containing a tertiary alkanolamine and piperazine at temperatures between 298.15 and 353.15 K
CF Patzschke, J Zhang, PS Fennell, JPM Trusler
Journal of Chemical & Engineering Data 62 (7), 2075-2083, 2017
142017
Hydrotalcite-Derived Copper-Based Oxygen Carrier Materials for Efficient Chemical-Looping Combustion of Solid Fuels with CO2 Capture
M High, CF Patzschke, L Zheng, D Zeng, R Xiao, PS Fennell, Q Song
Energy & Fuels 36 (18), 11062-11076, 2022
82022
Process integration of chemical looping water splitting with a sintering plant for iron making
K Katayama, H Bahzad, M Boot-Handford, CF Patzschke, PS Fennell
Industrial & Engineering Chemistry Research 59 (15), 7021-7032, 2020
72020
Simulation of a 100-MW solar-powered thermo-chemical air separation system combined with an oxy-fuel power plant for bio-energy with carbon capture and storage (BECCS)
CF Patzschke, H Bahzad, ME Boot-Handford, PS Fennell
Mitigation and adaptation strategies for global change 25, 539-557, 2020
62020
Closing the carbon cycle to maximise climate change mitigation: power-to-methanol vs. power-to-direct air capture. Sustain Energy Fuels 2 (6): 1153–1169
HA Daggash, CF Patzschke, CF Heuberger, L Zhu, K Hellgardt, ...
52018
Copper manganese oxides as oxygen carriers for chemical looping air separation for near-zero emission power generation
CF Patzschke
Imperial College London, 2019
22019
Turquoise Hydrogen: Methane Pyrolysis as a Low-CO2 Source of H2
CF Patzschke, B Parkinson, S Raman, DC Dankworth, K Hellgardt
12023
Maximizing the Mitigation Potential of Curtailed Wind: A Comparison Between Carbon Capture and Utilization, and Direct Air Capture Processes for the UK
HA Daggash, C Patzschke, C Heuberger, L Zhu, N Mac Dowell
2017
Power-to-transport: Using curtailed wind to run CCU processes
H A Daggash, C Patzschke, C Heuberger, L Zhu, N Mac Dowell
2017
Maximising the mitigation potential of curtailed wind in the UK: A comparison between Carbon Dioxide Capture and Utilisation, and Direct Air Capture processes
HA Daggash, C Patzschke, C Heuberger, L Zhu, N Mac Dowell
MAXIMISING THE MITIGATION POTENTIAL OF CURTAILED WIND: A COMPARISON BETWEEN CARBON CAPTURE AND UTILISATION, AND DIRECT AIR CAPTURE PROCESSES FOR THE UK
C Patzschke
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–17