Age-dependence of stand biomass in managed boreal forests based on the Finnish National Forest Inventory data A Repo, T Rajala, HM Henttonen, A Lehtonen, M Peltoniemi, J Heikkinen Forest Ecology and Management 498, 119507, 2021 | 38 | 2021 |
When do we have the power to detect biological interactions in spatial point patterns? T Rajala, SC Olhede, DJ Murrell Journal of Ecology 107 (2), 711-721, 2019 | 35 | 2019 |
A review on anisotropy analysis of spatial point patterns T Rajala, C Redenbach, A Särkkä, M Sormani Spatial Statistics 28, 141-168, 2018 | 35 | 2018 |
Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection T Rajala, DJ Murrell, SC Olhede Journal of the Royal Statistical Society Series C: Applied Statistics 67 (5 …, 2018 | 33 | 2018 |
A family of spatial biodiversity measures based on graphs T Rajala, J Illian Environmental and ecological statistics 19, 545-572, 2012 | 33 | 2012 |
Estimating geometric anisotropy in spatial point patterns TA Rajala, A Särkkä, C Redenbach, M Sormani Spatial Statistics 15, 100-114, 2016 | 20 | 2016 |
Optimization of a high‐throughput phenotyping method for chain‐forming phytoplankton species S Gross, O Kourtchenko, T Rajala, B Andersson, L Fernandez, ... Limnology and Oceanography: Methods 16 (2), 57-67, 2018 | 19 | 2018 |
Growth of a common planktonic diatom quantified using solid medium culturing O Kourtchenko, T Rajala, A Godhe Scientific reports 8 (1), 9757, 2018 | 17 | 2018 |
A three-dimensional anisotropic point process characterization for pharmaceutical coatings H Häbel, T Rajala, M Marucci, C Boissier, K Schladitz, C Redenbach, ... Spatial Statistics 22, 306-320, 2017 | 16 | 2017 |
Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range T Rajala, A Penttinen Computational Statistics & Data Analysis 71, 530-541, 2014 | 9 | 2014 |
Assessing local trends in indicators of ecosystem services with a time series of forest resource maps M Katila, T Rajala, A Kangas Finnish Society of Forest Science, 2020 | 8 | 2020 |
Hierarchical models for epidermal nerve fiber data C Andersson, T Rajala, A Särkkä Statistics in medicine 37 (3), 357-374, 2018 | 8 | 2018 |
What is the Fourier transform of a spatial point process? TA Rajala, SC Olhede, JP Grainger, DJ Murrell IEEE Transactions on Information Theory 69 (8), 5219-5252, 2023 | 7 | 2023 |
Second order analysis of geometric anisotropic point processes revisited M Sormani, C Redenbach, A Särkkä, T Rajala Spatial Statistics 38, 100456, 2020 | 6 | 2020 |
Variational Bayes approach for classification of points in superpositions of point processes T Rajala, C Redenbach, A Särkkä, M Sormani Spatial statistics 15, 85-99, 2016 | 6 | 2016 |
spatgraphs: Graphs for spatial point patterns T Rajala R package version 2, 2012 | 6 | 2012 |
Vesilintuseurannan tulokset 2024 M Piha, A Lindén, A Lehikoinen, T Rajala, T Seimola Luonnonvarakeskus, 2024 | 5 | 2024 |
Seasonal and diel activity patterns of the endangered taiga bean goose (Anser fabalis fabalis) during the breeding season, monitored with camera traps M Nykänen, H Pöysä, S Hakkarainen, T Rajala, J Matala, M Kunnasranta Plos one 16 (7), e0254254, 2021 | 5 | 2021 |
A Bayesian hierarchical point process model for epidermal nerve fiber patterns C Andersson, T Rajala, A Särkkä Mathematical Biosciences 313, 48-60, 2019 | 5 | 2019 |
Spatial point processes and graph based statistical features T Rajala Univ., 2010 | 5 | 2010 |